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3
Foundations II: Measurement and

Evolution

3.1 Orthogonal measurement and beyond

In Chapter 2 we discussed how to describe the state of an open quantum
system, one which is part of a larger system. In this Chapter we will
extend the theory of open quantum systems further. In particular, we
will develop two important concepts: generalized measurements, which are
performed by making use of an auxiliary system, and quantum channels,
which describe how open systems evolve.

3.1.1 Orthogonal Measurements

An axiom of quantum theory asserts that a measurement may be de-
scribed as an orthogonal projection operator. But if a measurement of
system S is realized by performing an orthogonal measurement on a larger
system that contains S, the resulting operation performed on S alone need
not be an orthogonal projection. We would like to find a mathematical
description of such “generalized measurements” on system S. But first
let’s recall how measurement of an arbitrary Hermitian operator can be
achieved in principle, following the classic treatment of Von Neumann.

To measure an observable M , we will modify the Hamiltonian of the
world by turning on a coupling between that observable and another vari-
able that represents the apparatus. Depending on the context, we will
refer to the auxiliary system used in the measurement as the “pointer,”
the “meter,” or the “ancilla.” (The word “ancilla” just means something
extra which is used to achieve a desired goal.) The coupling establishes a
correlation between the eigenstates of the observable and the distinguish-
able states of the pointer, so that we can prepare an eigenstate of the
observable by “observing” the pointer.

This may not seem like a fully satisfying model of measurement because
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3.1 Orthogonal measurement and beyond 5

we have not explained how to measure the pointer. Von Neumann’s atti-
tude was that it is possible in principle to correlate the state of a micro-
scopic quantum system with the value of a macroscopic classical variable,
and we may take it for granted that we can perceive the value of the
classical variable. A quantum measurement, then, is a procedure for am-
plifying a property of the microscopic world, making it manifest in the
macroscopic world.

We may think of the pointer as a particle of mass m that propagates
freely apart from its tunable coupling to the quantum system being mea-
sured. Since we intend to measure the position of the pointer, it should be
prepared initially in a wavepacket state that is narrow in position space
— but not too narrow, because a vary narrow wave packet will spread too
rapidly. If the initial width of the wave packet is ∆x, then the uncertainty
in it velocity will be of order ∆v = ∆p/m ∼ ~/m∆x, so that after a time
t, the wavepacket will spread to a width

∆x(t) ∼ ∆x+
~t
∆x

, (3.1)

which is minimized for (∆x(t))2 ∼ (∆x)2 ∼ ~t/m. Therefore, if the
experiment takes a time t, the resolution we can achieve for the final
position of the pointer is limited by

∆x >∼(∆x)SQL ∼
√

~t
m
, (3.2)

the “standard quantum limit.” We will choose our pointer to be suffi-
ciently heavy that this limitation is not serious.

The Hamiltonian describing the coupling of the quantum system to the
pointer has the form

H = H0 +
1

2m
P 2 + λ(t)M ⊗ P , (3.3)

where P 2/2m is the Hamiltonian of the free pointer particle (which we
will henceforth ignore on the grounds that the pointer is so heavy that
spreading of its wavepacket may be neglected), H0 is the unperturbed
Hamiltonian of the system to be measured, and λ is a coupling constant
that we are able to turn on and off as desired. The observable to be
measured, M , is coupled to the momentum P of the pointer.

If M does not commute with H0, then we have to worry about how
the observable M evolves during the course of the measurement. To
simplify the analysis, let us suppose that either [M ,H0] = 0, or else the
measurement is carried out quickly enough that the free evolution of the
system can be neglected during the measurement procedure. Then the
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Hamiltonian can be approximated as H ' λ(t)M ⊗ P . If the coupling
λ switches on suddenly at time zero and switches off suddenly at time T ,
the resulting time evolution operator is

U(T ) ' exp (−iλTM ⊗ P ) . (3.4)

Expanding in the basis in which M is diagonal,

M =
∑
a

|a〉Ma〈a|, (3.5)

we express U(T ) as

U(T ) =
∑
a

|a〉 exp (−iλtMaP ) 〈a|. (3.6)

Now we recall that P generates a translation of the position of the
pointer: P = −i ddx in the position representation, so that e−ix0P =

exp
(
−x0

d
dx

)
, and by Taylor expanding,

e−ix0Pψ(x) = ψ(x− x0); (3.7)

In other words e−ix0P acting on a wavepacket translates the wavepacket
by x0. We see that if our quantum system starts in a superposition of
M eigenstates, initially unentangled with the position-space wavepacket
|ψ(x) of the pointer, then after time T the quantum state has evolved to

U(T )

(∑
a

αa|a〉 ⊗ |ψ(x)〉

)
=
∑
a

αa|a〉 ⊗ |ψ(x− λTMa)〉; (3.8)

the position of the pointer has become correlated with the value of the
observable M . If the pointer wavepacket is narrow enough for us to
resolve all values of the Ma that occur (that is, the width ∆x of the packet
is small compared to λT∆Ma, where ∆Ma is the minimal gap between
eigenvalues of M), then when we observe the position of the pointer
(never mind how!) we will prepare an eigenstate of the observable. With
probability |αa|2, we will detect that the pointer has shifted its position
by λTMa, in which case we will have prepared the M eigenstate |a〉. We
conclude that the initial state |ϕ〉 of the quantum system is projected to
|a〉 with probability |〈a|ϕ〉|2. This is Von Neumann’s model of orthogonal
measurement.

The classic example is the Stern–Gerlach apparatus. To measure σ3

for a spin-1
2 object, we allow the object to pass through a region of inho-

mogeneous magnetic field
B3 = λz. (3.9)
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The magnetic moment of the object is µ~σ, and the coupling induced by
the magnetic field is

H = −λµzσ3. (3.10)

In this case σ3 is the observable to be measured, coupled to the position
z rather than the momentum of the pointer; thus, because z generates a
translation of P z, the coupling imparts an impulse to the pointer which
is correlated with its spin. We can perceive whether the object is pushed
up or down, and so project out the spin state | ↑z〉 or | ↓z〉. By rotating
the magnet, we could measure the observable n̂ · ~σ instead.

Thinking more abstractly, suppose that {Ea, a = 0, 1, 2, . . . N−1} is a
complete set of orthogonal projectors satisfying

EaEb = δabEa, Ea = E†a,
∑
a

Ea = I. (3.11)

To perform an orthogonal measurement with these outcomes, we intro-
duce an N -dimensional pointer system with fiducial orthonormal basis
states {|a〉, a = 0, 1, 2, . . . , N−1}, and, by coupling the system to the
pointer, perform the unitary transformation

U =
∑
a,b

Ea ⊗ |b+ a〉〈b|. (3.12)

Thus the pointer advances by an amount a if the state of the system
is within the support of the projector Ea. (The addition in |b + a〉 is
understood to be modulo N ; we may envision the pointer as a circular
dial with N uniformly spaced tick marks.) The unitarity of U is easy to
verify:

UU † =

∑
a,b

Ea ⊗ |b+ a〉〈b|

∑
c,d

Ec ⊗ |d〉〈d+ c|


=
∑
a,b,c,d

δacEa ⊗ δbd|b+ a〉〈d+ c|

=
∑
a

Ea ⊗
∑
b

|b+ a〉〈b+ a| = I ⊗ I. (3.13)

This unitary transformation acts on an initial product state of system
and pointer according to

U : |Ψ〉 = |ψ〉 ⊗ |0〉 7→ |Ψ′〉 =
∑
a

Ea|ψ〉 ⊗ |a〉; (3.14)

if the pointer is then measured in the fiducial basis, the measurement
postulate implies that the outcome a occurs with probability

Prob(a) = 〈Ψ′| (I ⊗ |a〉〈a|) |Ψ′〉 = 〈ψ|Ea|ψ〉, (3.15)
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and that when this outcome occurs the normalized post-measurement
state is

Ea|ψ〉
‖Ea|ψ〉‖

. (3.16)

If the measurement is performed and its outcome is not known, the initial
pure state of the system becomes a mixture of these post-measurement
states: ∑

a

Prob(a)
Ea|ψ〉〈ψ|Ea

〈ψ|Ea|ψ〉
=
∑
a

Ea|ψ〉〈ψ|Ea. (3.17)

In fact, the system is described by this density operator once it becomes
entangled with the pointer, whether we bother to observe the pointer or
not. If the initial state of the system before the measurement is a mixed
state with density matrix ρ, then by expressing ρ as an ensemble of pure
states we conclude that the measurement modifies the state according to

ρ 7→
∑
a

EaρEa. (3.18)

We see that if, by coupling the system to our pointer, we can execute
suitable unitary transformations correlating the system and the pointer,
and if we can observe the pointer in its fiducial basis, then we are empow-
ered to perform any conceivable orthogonal measurement on the system.

3.1.2 Generalized measurements

In this discussion of orthogonal measurement, the fiducial basis of the
pointer had two different roles — we assumed that the fiducial pointer
states become correlated with the system projectors {Ea}, and also that
the measurement of the pointer projects onto the fiducial basis. In princi-
ple we could separate these two roles. Perhaps the unitary transformation
applied to system and pointer picks out a different preferred basis than
the basis in which the pointer is easily measured. Or perhaps the pointer
which becomes entangled with the system is itself microscopic, and we
may entangle it with a second macroscopic pointer in order to measure
the microscopic pointer in whatever basis we prefer.

Suppose, to be concrete, that the system A is a single qubit, and so is
the pointer B. They interact, resulting in the unitary map

U : (α|0〉+ β|1〉)A ⊗ |0〉B 7→ α|0〉A ⊗ |0〉B + β|1〉A ⊗ |1〉B. (3.19)

Measuring the pointer by projecting onto the basis {|0〉, |1〉} would induce
an orthogonal measurement of the system, also in the {|0〉, |1〉} basis. But
suppose that we measure the pointer in a different basis instead, such as
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{|±〉 = 1√
2

(|0〉 ± |1〉)}. Then the measurement postulate dictates that the

two outcomes + and − occur equiprobably, and that the corresponding
post-measurement states of the system are

α|0〉 ± β|1〉. (3.20)

In contrast to an orthogonal measurement of the system, these two post-
measurement states are not orthogonal, unless |α| = |β|. Furthermore,
also in contrast to an orthogonal measurement, if two such measurements
are performed in rapid succession, the outcomes need not be the same.
We use the term generalized measurement to mean a measurement, like
this one, which is not necessarily an orthogonal projection acting on the
system.

It is convenient to describe this measurement procedure by expanding
the entangled state of system and pointer in the basis in which the pointer
is measured; hence we rewrite eq.(3.19) as

U : |ψ〉A ⊗ |0〉B 7→M+|ψ〉A ⊗ |+〉B +M−|ψ〉A ⊗ |−〉B, (3.21)

where

M+ =
1√
2

(
1 0
0 1

)
=

1√
2
I, M− =

1√
2

(
1 0
0 −1

)
=

1√
2
σ3. (3.22)

Evidently, by measuring B in the basis {|±〉}, we prepare A in one of the
states M±|ψ〉, up to a normalization factor.

Now let’s generalize this idea to the case where the pointer system
B is N -dimensional, and the measurement of the pointer projects onto
an orthonormal basis {|a〉, a = 0, 1, 2, . . . , N−1}. Again we’ll assume
that the system A and pointer B are initially in a product state, then
an entangling unitary transformation U correlates the system with the
pointer. By expanding the action of U in the basis for B we obtain

U : |ψ〉A ⊗ |0〉B 7→
∑
a

Ma|ψ〉A ⊗ |a〉B. (3.23)

Since U is unitary, it preserves the norm of any input, which means that

1 =

∥∥∥∥∥∑
a

Ma|ψ〉 ⊗ |a〉

∥∥∥∥∥
2

=
∑
a,b

〈ψ|M †
aM b|ψ〉〈a|b〉 =

∑
a

〈ψ|M †
aMa|ψ〉

(3.24)

for any |ψ〉; hence ∑
a

M †
aMa = I. (3.25)
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The complete orthogonal measurement projecting onto the pointer ba-
sis {|a〉B} is equivalent to the incomplete orthogonal measurement on
AB with projectors {I ⊗ |a〉〈a|}; the measurement postulate asserts that
outcome a occurs with probability

Prob(a) = ‖Ma|ψ〉‖2, (3.26)

and that if outcome a occurs the post-measurement state of the system
is

Ma|ψ〉
‖Ma|ψ〉‖

. (3.27)

The completeness relation
∑

aM
†
aMa = I ensures that the probabilities

sum to one, but the possible post-measurement states need not be mu-
tually orthogonal, nor are the measurements necessarily repeatable. If
we perform the measurement twice in succession and obtain outcome a
the first time, the conditional probability of obtaining outcome b in the
second measurement is

Prob(b|a) =
‖M bMa|ψ〉‖2

‖Ma|ψ〉‖2
. (3.28)

The two measurements agree if Prob(b|a) = δba, which is satisfied for
arbitrary initial states of the system only if M bMa = δbaMa up to a
phase factor, i.e. in the case where the measurement is orthogonal.

We see that if the initial state of the system is the density operator
ρ (realized as an ensemble of pure states), there is an operator Ea =
M †

aMa associated with each possible measurement outcome a, such that
the probability of outcome a is

Prob(a) = tr (ρEa) . (3.29)

The measurement operators {Ea} form a complete set of Hermitian non-
negative operators; that is, they satisfy the properties:

1. Hermiticity. Ea = E†a.

2. Positivity. 〈ψ|Ea|ψ〉 ≥ 0 for any vector |ψ〉; we abbreviate this
property by simply writing Ea ≥ 0.

3. Completeness.
∑

aEa = I.

Such a partition of unity by nonnegative operators is called a positive
operator-valued measure, or POVM. (The term measure is a bit heavy-
handed in this finite-dimensional context; it becomes more apt when the
index a can be continuously varying.)
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We have seen how a POVM can arise when an orthogonal measurement
is performed on a meter after the meter interacts with the system. In
fact any POVM can be realized this way. We need only observe that a
nonnegative Hermitian operator Ea has a nonnegative square root

√
Ea;

more generally, the operator

Ma = Ua

√
Ea (3.30)

obeys M †
aMa = Ea where Ua is an arbitrary unitary operator —

eq.(3.30) is the polar decomposition of the operator Ma. Plugging into
eq.(3.23) yields the unitary interaction which realizes the POVM {Ea}. In
this formulation, the post-measurement state corresponding to outcome
a,

Ua

( √
Ea|ψ〉

‖
√
Ea|ψ〉‖

)
, (3.31)

is arbitrary, since we are free to choose the unitary Ua however we please
for each possible outcome. The POVM attributes a probability to each
measurement outcome, but provides no guidance regarding the state after
the measurement. Indeed, after the measurement we have the freedom
to discard the state and replace it by whatever freshly prepared state we
desire.

3.2 Quantum channels

3.2.1 The operator-sum representation

We now proceed to the next step in our program of understanding the
behavior of one part of a bipartite quantum system. We have seen that
a pure state of the bipartite system AB may behave like a mixed state
when we observe subsystem A alone, and that an orthogonal measurement
of the bipartite system can realize a (nonorthogonal) POVM on A alone.
Next we ask, if a state of the bipartite system undergoes unitary evolution,
how do we describe the evolution of A alone?

In effect, we have already answered this question in our discussion of
generalized measurements. If system A starts out in a pure state |ψ〉
(unentangled withB), and then interacts withB, the joint state of AB has
the form eq.(3.23); the resulting density operator for A is found by tracing
out B. Equivalently, we may imagine measuring system B in the basis
{|a〉}, but failing to record the measurement outcome, so we are forced to
average over all the possible post-measurement states, weighted by their
probabilities. The result is that the initial density operator ρ = |ψ〉〈ψ| is
subjected to a linear map E , which acts as

E(ρ) =
∑
a

MaρM
†
a, (3.32)
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where the operators {Ma} obey the completeness relation eq.(3.25). Be-
ing linear, E acts as in eq.(3.32) not just on pure states, but on any density
operator.

A linear map of the form eq.(3.32), where the {Ma} obey eq.(3.25), is
called a quantum channel. The word “channel” is drawn from communi-
cation theory — we are to imagine a sender who transmits the state ρ
though a communication link to another party who receives the modified
state E(ρ). Sometimes the word superoperator is used as a synonym for
quantum channel, where “super” conveys that the map takes operators
to operators rather than vectors to vectors. Yet another name for the
same object is trace-preserving completely positive map, or TPCP map
for short. The justification for this name will emerge shortly. Eq.(3.32)
is said to be an operator-sum representation of the quantum channel, and
the operators {Ma} are called the Kraus operators or operation elements
of the channel.

A quantum channel maps density operators to density operators; that
is, has the following easily verified properties:

1. Linearity. E(αρ1 + βρ2) = αE(ρ1) + βE(ρ2).

2. Preserves Hermiticity. ρ = ρ† implies E(ρ) = E(ρ)† .

3. Preserves positivity. ρ ≥ 0 implies E(ρ) ≥ 0.

4. Preserves trace. tr (E(ρ)) = tr (ρ).

These properties partially explain the locution “trace-preserving com-
pletely positive map,” except that we are still missing the reason for the
modifier “completely.” That’s coming soon.

We’ve seen how a quantum channel acting on system A arises from
a unitary transformation acting on A and B followed by a partial trace
on B. As in our discussion of generalized measurements, we can also
run this argument backwards to see that any quantum channel may be
realized this way. Given a quantum channel E acting on A with Kraus
operators {Ma}, we may introduce the auxiliary system B with Hilbert
space dimension matching the number of Kraus operators. A unitary
transformation may then be constructed whose action on |ψ〉A ⊗ |0〉B is
as in eq.(3.23), from which the quantum channel E is obtained by tracing
out B.

The operator-sum representation of a given quantum channel E is not
unique, because we can perform the partial trace on B in any basis we
please. When expressed in terms of rotated basis states {|µ〉} such that

|a〉 =
∑
µ

|µ〉Vµa (3.33)
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for unitary V , the joint state of AB becomes∑
a,µ

Ma|ψ〉A ⊗ |µ〉BVµa =
∑
µ

Nµ|ψ〉A ⊗ |µ〉B (3.34)

where the new Kraus operators are

Nµ =
∑
a

VµaMa. (3.35)

We will see soon that any two operator-sum representations of the same
quantum channel are always related by such a unitary change of basis for
the Kraus operators.

Quantum channels are important because they provide us with a for-
malism for discussing decoherence, the evolution of pure states into mixed
states. Unitary evolution of ρA is the special case in which there is only
one term in the operator sum. If there are two or more terms, then there
are pure initial states of A which become entangled with B under evolu-
tion governed by the joint unitary transformation UAB, and therefore the
state of A becomes mixed when we trace out B.

Two channels E1 and E2 can be composed to obtain another channel
E2 ◦ E1; if E1 describes evolution from yesterday to today, and E2 de-
scribes evolution from today to tomorrow, then E2 ◦ E1 describes the evo-
lution from yesterday to tomorrow. Specifically, if E1 has an operator-sum
representation with N Kraus operators {Ma}, and E2 has an operator-
sum representation with M Kraus operators {Nµ}, then E2 ◦ E1 has an
operator-sum representation with NM Kraus operators {NµMa}. Be-
cause we can compose them in this way, we say that quantum channels
form a dynamical semigroup.

3.2.2 Reversibility

A unitary transformation U has a unitary inverse U †. Thus if today’s
quantum state was obtained by applying U to yesterday’s state, we can
in principle recover yesterday’s state by applying U † to today’s state.
Unitary time evolution is reversible.

Is the same true for general quantum channels? If channel E1 with
Kraus operators {Ma} is inverted by channel E2 with Kraus operators
{Nµ}, then for any pure state |ψ〉 we have

E2 ◦ E1(|ψ〉〈ψ|) =
∑
µ,a

NµMa|ψ〉〈ψ|M †
aN
†
µ = |ψ〉〈ψ|. (3.36)

Since the left-hand side is a sum of positive terms, eq.(3.36) can hold only
if each of these terms is proportional to |ψ〉〈ψ|, hence

NµMa = λµaI (3.37)
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for each µ and a. Using the completeness relation, we find

M †
bMa = M †

b

(∑
µ

N †µNµ

)
Ma =

∑
µ

λ∗µbλµaI ≡ βbaI. (3.38)

where each βaa is real and positive unless Ma = 0.
Since the channel E1 maps system A to itself, each Kraus operator Ma

is a square d × d matrix, where d is the dimension of A. Therefore Ma

has a polar decomposition, which yields

Ma = Ua

√
M †

aMa =
√
βaa Ua (3.39)

for some unitary Ua, and it then follows that

M †
bMa =

√
βaaβbb U

†
bUa = βbaI, (3.40)

and hence

Ua =
βba√
βaaβbb

U b (3.41)

for each a and b. We conclude that each Kraus operator Ma is propor-
tional to a single unitary matrix, and hence that E1 is a unitary map. A
quantum channel can be inverted by another quantum channel only if it
is unitary.

We have found that decoherence is irreversible. Once system A becomes
entangled with system B, we can’t undo the damage to A if we don’t
have access to B. Decoherence causes quantum information to leak to
a system’s environment, and because we cannot control the environment
this information cannot be recovered.

This argument applies to a channel which maps A to A′ as long as A
and A′ have the same dimension. But the conclusion can be evaded if A′

has a larger dimension than A, since in that case the Kraus operators are
rectangular, and the polar decomposition does not apply. We will take
advantage of this exception when developing the theory of quantum error
correction in Chapter 7.

3.2.3 Quantum channels in the Heisenberg picture

We have described quantum channels using the Schrödinger picture in
which the quantum state evolves with time. Sometimes it is convenient
to use the Heisenberg picture, in which the state is stationary and the
operators evolve instead.

When time evolution is unitary, in the Schrödinger picture the state
vector at time t is obtained from the state vector at time 0 by

|ψ(t)〉 = U(t)|ψ(0)〉 (3.42)
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where U(t) is unitary, and correspondingly a density operator evolves
according to

ρ(t) = U(t)ρ(0)U(t)†. (3.43)

In the Heisenberg picture the density operator ρ is fixed, and an operator
A evolves according to

A(t) = U(t)†A(0)U(t). (3.44)

This evolution law is chosen so that the two pictures agree on the expec-
tation values of observables at any time:

〈A〉t,Schr = tr (A(0)ρ(t)) = tr (A(t)ρ(0)) = 〈A〉t,Heis, (3.45)

where we have used the cyclic property of the trace.
Likewise, if the E is a quantum channel which acts on density operators

according to

ρ′ = E(ρ) =
∑
a

MaρM
†
a, (3.46)

we may use an alternative description in which the state is fixed, but
operators evolve as

A′ = E∗(A) =
∑
a

M †
aAMa, (3.47)

so that
tr (A E(ρ)) = tr (E∗(A)ρ) . (3.48)

We say that E∗ is the dual or adjoint of E .
Note that the dual of a channel need not be a channel, that is, might

not be trace preserving. Instead, the completeness property of the Kraus
operators {Ma} implies that

E∗(I) = I (3.49)

if E is a channel. We say that a map is unital if it preserves the identity
operator, and conclude that the dual of a channel is a unital map.

Not all quantum channels are unital, but some are. If the Kraus oper-
ators of E satisfy ∑

a

M †
aMa = I =

∑
a

MaM
†
a, (3.50)

then E is unital and its dual E∗ is also a unital channel. A unital quan-
tum channel maps a maximally mixed density operator to itself; it is the
quantum version of a doubly stochastic classical map, which maps proba-
bility distributions to probability distributions and preserves the uniform
distribution.
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3.2.4 Quantum operations

Generalized measurements and quantum channels are actually special
cases of a more general notion called a quantum operation. As already
noted, a generalized measurement can be realized by entangling a system
with a meter and performing an orthogonal measurement on the meter,
while a quantum channel arises if we measure the meter but completely
forget the measurement outcome. In a quantum operation, we imagine
measuring the meter, then retaining some of the information about the
outcome while discarding the rest.

We may consider a generalized measurement described by Kraus op-
erators {Maµ} which carry two labels, a and µ. These obey the usual
completeness relation ∑

a,µ

M †
aµMaµ = I. (3.51)

Suppose that, after a measurement that projects onto a definite value
for both a and µ, we remember a but forget µ. Then, if the quantum
state is ρ before the measurement, the post-measurement state (up to a
normalization factor) is

Ea(ρ) ≡
∑
µ

MaµρM
†
aµ, (3.52)

where the outcome a occurs with probability

Prob(a) = tr Ea(ρ). (3.53)

Eq.(3.52) looks like the operator-sum representation for a quantum chan-
nel, except that now instead of the completeness relation the Kraus op-
erators obey an inequality constraint∑

µ

M †
aµMaµ ≤ I. (3.54)

(We write A ≤ I as a shorthand for the statement that I − A is a
nonnegative operator; that is, the eigenvalues of the Hermitian operatorA
are no larger than 1.) Our earlier notion of a generalized measurement is
recovered when µ takes just one value (all information about the outcome
is retained), and the operation becomes a channel when a takes just one
value (all information about the outcome is discarded).

The state needs to be renormalized to restore the unit trace condition;
therefore under an operation the state really evolves nonlinearly according
to

ρ 7→ Ea(ρ)

tr Ea(ρ)
. (3.55)
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It is often convenient, though, to regard the operation as a linear map
that takes ρ to a subnormalized state. For example, we may want
to consider a sequence of n consecutive measurements with outcomes
{a1, a2, . . . , an−1, an}, where the ith measurement transforms the state
according to the operation Eai . Rather than renormalizing the state after
each measurement, we can wait until after the final measurement in the
sequence before renormalizing. The final state can then be written

ρ 7→
Ean ◦ Ean−1 ◦ · · · ◦ Ea2 ◦ Ea1(ρ)

tr Ean ◦ Ean−1 ◦ · · · ◦ Ea2 ◦ Ea1(ρ)
(3.56)

where the normalizing factor in the denominator is just the probability
of the observed sequence of measurement outcomes.

3.2.5 Linearity

A quantum channel specifies how an initial density operator evolves to a
final density operator. Why on general grounds should we expect evolu-
tion of a quantum state to be described by a linear map? One possible
answer is that nonlinear evolution would be incompatible with interpret-
ing the density operator as an ensemble of possible states.

Suppose that E maps an initial state at time t = 0 to a final state at
time t = T , and suppose that at time t = 0 the initial state ρi is prepared
with probability pi. Then the time-evolved state at t = T will be E(ρi)
with probability pi.

On the other hand we argued in Chapter 2 that an ensemble in which
σi is prepared with probability qi can be described by the convex combi-
nation of density operators

σ =
∑
i

qiσi. (3.57)

Therefore the initial state is described by
∑

i piρi, which evolves to

ρ′ = E

(∑
i

piρi

)
. (3.58)

But we can also apply eq.(3.57) to the ensemble of final states, concluding
that the final state may alternatively be described by

ρ′ =
∑
i

piE(ρi). (3.59)

Equating the two expressions for ρ′ we find that E must act linearly, at
least on convex combinations of states.
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Similar reasoning applies to quantum operations, if we regard the nor-
malization of an operation Ea as indicating the probability of the corre-
sponding measurement outcome. Suppose again that the initial state ρi
is prepared with a priori probability pi and subsequently measured. If the
state is ρi then measurement outcome a occurs with conditional proba-
bility p(a|i), and the post-measurement state is Ea(ρi)/p(a|i); hence the
state ensemble after the measurement is described by the density operator

ρ′ =
∑
i

p(i|a)
Ea(ρi)
p(a|i)

, (3.60)

where p(i|a) is the a posteriori probability that state ρi was prepared,
taking into account the information gained by doing the measurement.
On the other hand, applying the operation Ea to the convex combination
of the initial states {ρi} yields

ρ′ =
Ea (
∑

i piρi)

pa
. (3.61)

Invoking Bayes’ rule
pip(a|i) = pap(i|a) (3.62)

we see that the operation Ea is required to be a linear map:

Ea

(∑
i

piρi

)
=
∑
i

piEa(ρi). (3.63)

3.2.6 Complete positivity

A quantum channel is a linear map taking density operators to density
operators. In particular, if its input is a nonnegative operator than so is
its output. We therefore say that a channel is a positive map.

But a channel has a stronger property than mere positivity; it is com-
pletely positive. This means that the channel remains positive even when
we consider it to be acting on just part of a larger system.

If a channel E maps linear operators on Hilbert space HA to linear
operators on Hilbert space HA′ , we will usually express this more eco-
nomically by saying E maps A to A′. We may extend the input Hilbert
space to HA⊗HB, and consider the extended channel E ⊗ I mapping AB
to A′B. We say that E is completely positive if any such extension of E
is positive.

Clearly, quantum channels are completely positive, because if E has
an operator-sum representation with Kraus operators {Ma}, then E ⊗
I has an operator-sum representation with Kraus operators {Ma ⊗ I}.
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Likewise, quantum operations, though not necessarily trace preserving,
are also completely positive.

It is perfectly reasonable to demand that a channel be completely pos-
itive if it is to describe the time evolution of a quantum system — even
though the channel acts on just part of the world, it should map an initial
state of the whole world to a final state of the whole world. It is there-
fore important to note that not all positive maps are completely positive;
complete positivity is a stronger condition.

A simple example is the transpose map T , mapping the d-dimensional
system A to itself. In a particular basis {|i〉}, T acts as

T : |i〉〈j| 7→ |j〉〈i| (3.64)

and hence
T : ρ 7→ ρT . (3.65)

The map T is evidently positive because

〈ψ|ρT |ψ〉 =
∑
i,j

ψ∗j
(
ρT
)
ji
ψi =

∑
i,j

ψi (ρ)ij ψ
∗
j = 〈ψ∗|ρ|ψ∗〉 (3.66)

for any vector |ψ〉; therefore ρT is nonnegative if ρ is.
But T is not completely positive. Consider the (unconventionally nor-

malized) maximally entangled state on AB, whereB is also d-dimensional:

|Φ̃〉AB =
d−1∑
i=0

|i〉A ⊗ |i〉B ≡
∑
i

|i, i〉. (3.67)

The extension of T acts on this state as

T ⊗ I : |Φ̃〉〈Φ̃| =
∑
i,j

|i〉〈j| ⊗ |i〉〈j| 7→
∑
i,j

|j〉〈i| ⊗ |i〉〈j| ≡
∑
i,j

|j, i〉〈i, j|;

(3.68)

that is, it maps |Φ̃〉〈Φ̃| to the SWAP operator which interchanges the
systems A and B:

SWAP : |ψ〉A ⊗ |ϕ〉B =
∑
i,j

ψiϕj |i, j〉 =7→
∑
i,j

ϕjψi|j, i〉 = |ϕ〉A ⊗ |ψ〉B

(3.69)
Since the square of SWAP is the identity, its eigenvalues are ±1. States
which are symmetric under interchange of A and B have eigenvalue 1,
while antisymmetric states have eigenvalue -1. Thus SWAP has negative
eigenvalues, which means that T ⊗ I is not positive and therefore T is not
completely positive.
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3.3 Channel-state duality and the dilation of a channel

We have now seen that a quantum channel acting on A, which arises from
a unitary map on an extension of A, is a completely positive linear map of
density operators to density operators. We have also argued that linearity
and complete positivity are properties that should hold for any reasonable
evolution law on quantum states. It is therefore satisfying to note that
any trace-preserving completely positive linear map is a quantum channel
— it has an operator sum representation and a unitary realization. When
considering the (in general nonunitary) evolution of A, we are entitled to
imagine that A is part of an extended system which evolves unitarily.

3.3.1 Channel-state duality

To prove this statement we will use a trick which is interesting in its
own right and also has other applications. For the purpose of studying
the properties of a map E taking A to A′, we introduce an auxiliary
system R with the same dimension as A, which we call the reference
system. If E is completely positive, it maps a maximally entangled state
on RA to a nonnegative operator on RA′. Conversely, we may associate
with any nonnegative operator on RA′ a corresponding CP map taking
A to A′. This correspondence between maps and states, called the Choi-
Jamiolkowski isomorphism or channel-state duality, is a very useful tool.

To see how it works, consider how I⊗E acts on the maximally entangled
state

|Φ̃〉RA =
d−1∑
i=0

|i〉R ⊗ |i〉A. (3.70)

where A and R both have dimension d. This vector has norm
√
d instead

of norm 1; we choose this unconventional normalization, highlighted by
the tilde over Φ, to avoid annoying factors of d in the formulas that
follow. If EA→A′ is completely positive, then I ⊗ E maps |Φ̃〉〈Φ̃| (up
to normalization) to a density operator on RA′, which like any density
operator can be realized by an ensemble of pure states; hence

(I ⊗ E)
((
|Φ̃〉〈Φ̃|

)
RA

)
=
∑
a

(
|Ψ̃a〉〈Ψ̃a|

)
RA′

. (3.71)

Here the normalization of |Ψ̃a〉 may depend on a; in order to make the
equation look less cluttered, we’ve absorbed the probability of each pure
state occurring in the ensemble into that state’s normalization.

Now we notice that

|ϕ〉A =
∑
i

ϕi|i〉A =
∑
i

ϕi

(
R〈i|Φ̃〉RA

)
= R〈ϕ∗|Φ̃〉RA; (3.72)



3.3 Channel-state duality and the dilation of a channel 21

using the linearity of E , eq.(3.71) then implies

E ((|ϕ〉〈ϕ|)A) =
∑
a

(
〈ϕ∗|Ψ̃a〉〈Ψ̃a|ϕ∗〉

)
A′
. (3.73)

(This scheme for extracting the action on |ϕ〉A using the dual vector R〈ϕ∗|
is called the relative-state method.) Given a vector |Φ̃〉RA′ , where R is d
dimensional, we may define an operator Ma mapping HA to HA′ (where
A is d dimensional) by

Ma|ϕ〉A = R〈ϕ∗|Ψ̃a〉RA′ ; (3.74)

it is easy to check that Ma is linear. Thus eq.(3.73) provides an operator-
sum representation of E acting on the pure state (|ϕ〉〈ϕ|)A (and hence by
linearity acting on any density operator):

E(ρ) =
∑
a

MaρM
†
a. (3.75)

We have now established the desired isomorphism between states and
CP maps: Eq.(3.71) tells us how to obtain a state on RA′ from the channel
EA→A′ , while eq.(3.74) and eq.(3.75) tells us how to recover the CP map
from the state. Furthermore, the {Ma} must obey the completeness
relation

∑
aM

†
aMa = I if E is trace-preserving.

Put succinctly, the argument went as follows. Because EA→A′ is com-
pletely positive, I ⊗ E takes a maximally entangled state on RA to a
density operator on RA′, up to normalization. This density operator can
be expressed as an ensemble of pure states, and each of these pure states
is associated with a Kraus operator in the operator-sum representation of
E .

From this viewpoint, we see that the freedom to choose the Kraus
operators representing a channel in many different ways is really the same
thing as the freedom to choose the ensemble of pure states representing a
density operator in many different ways. According to the HJW theorem,
two different ensemble realizations of the same density operator,

(I ⊗ E)
((
|Φ̃〉〈Φ̃|

)
RA

)
=
∑
a

(
|Ψ̃a〉〈Ψ̃a|

)
RA′

=
∑
µ

(|γ̃µ〉〈γ̃µ|)RA′ , (3.76)

are related by a unitary change of basis,

|γ̃µ〉 =
∑
a

Vµa|Ψ̃a〉. (3.77)

Correspondingly, two different sets of Kraus operators {Ma} and {Nµ}
representing the same channel are related by

Nµ =
∑
a

VµaMa (3.78)
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where Vµa is a unitary matrix.
Channel-state duality also makes clear how many Kraus operators are

needed to describe a channel. A channel E mapping A to A′, where
A has dimension d and A′ has dimension d′, is equivalent to a density
operator on RA′, where R has dimension d, and the minimal number
of Kraus operators needed to represent the channel is the same as the
minimal number of pure states needed in an ensemble representation of
the density operator. This is the density operator’s rank (number of
nonzero eigenvalues), which is no larger than dd′. Of course, there may
be operator-sum representations of E which use many more than this
minimal number of Kraus operators, just as an ensemble representation
of a density operator might use many more than the minimal number of
pure states.

The number of free parameters needed to specify a channel mapping A
to A′ is the number (dd′)2 needed to specify a density operator on RA′,
except that there are d2 constraints because the map is trace preserving
for each of d2 linearly independent inputs. Therefore the number of real
free parameters is

d2
(
d′2 − 1

)
. (3.79)

This is 12 parameters for a general channel taking qubits to qubits. In
contrast, a unitary map on qubits has only 3 parameters, aside from the
physically irrelevant overall phase.

3.3.2 Stinespring dilation

Once we have an operator-sum representation of the channel EA→A′ , it is
easy to see how E can be realized by a unitary map acting on an extended
system. We introduce an extra system E, the channel’s environment,
which has dimension equal to the number of Kraus operators and or-
thonormal basis {|a〉}. Then we define an inner-product preserving map
(an isometry) which takes A to A′E according to

UA→A′E : |ψ〉 7→
∑
a

Ma|ψ〉 ⊗ |a〉. (3.80)

The completeness relation satisfied by the {Ma} implies U †U = IA.
Though U may not actually be unitary, it might as well be, because we
can easily extend an isometry to a unitary transformation by expanding
the input Hilbert space. This isometry, which yields EA→A′ when we trace
out the environment, is called the Stinespring dilation of the channel

Another way to think about the construction of the Stinespring dilation
is that we have used E to construct a purification of the density operator
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arising from channel-state duality:

|Ψ̄〉RA′E =
∑
a

|Ψ̃a〉RA′ ⊗ |a〉E . (3.81)

Apart from a normalization factor of
√
d, this is the pure state of RA′E

that results when the dilation acts on the maximally entangled state
|Φ̃〉RA; we may recover the dilation from |Ψ̄〉 using

UA→A′E |ψ〉A = R〈ψ∗|Ψ̄〉RA′E . (3.82)

This succinct way to characterize a channel using a pure state is sometimes
quite convenient, and we’ll make heavy use of it when studying quantum
channels in Chapter 10.

3.3.3 Axioms revisited

In Chapter 2 we stated the axioms of quantum mechanics in a form ap-
propriate for closed systems. With the theory of open systems now in
hand, we can give an alternative formulation with revised notions of how
states, measurements, and evolution are described.

States. A state is a density operator, a nonnegative Hermitian operator
in Hilbert space with unit trace.

Measurement. A measurement is a positive operator-valued measure
(POVM), a partition of unity by nonnegative operators. When the
measurement {Ea} is performed on the state ρ, the outcome a
occurs with probability tr (Eaρ).

Dynamics. Time evolution is described by a trace-preserving completely
positive map (TPCP map).

One could regard either the open-system or closed-system version as
the fundamental formulation of the theory; it’s really a matter of taste.
We have already seen how the open-system axioms are obtained starting
from the closed-system axioms. Alternatively, starting with the open-
system axioms, pure states arise as the extremal points in the space of
density operators, or from the observation that every density operator has
a purification in an extended system. Similarly, orthogonal measurements
and unitary evolution arise naturally because every POVM can be realized
by an orthogonal measurement in an extended system, and every trace-
preserving completely positive map has an isometric Stinespring dilation.
The notion that an open system may always be regarded as part of a
larger closed system is fondly known as the church of the larger Hilbert
space.
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3.4 Three quantum channels

The best way to familiarize ourselves with the concept of a quantum
channel is to study a few examples. We will now consider three examples
(all interesting and useful) of channels acting on a single qubit. If we
wish we may imagine that the channel E describes the fate of quantum
information that is transmitted with some loss of fidelity from a sender
to a receiver. Or, if we prefer, we may imagine that the transmission is
in time rather than space; that is, E describes the time evolution of a
quantum system that interacts with its environment.

3.4.1 Depolarizing channel

The depolarizing channel is a model of a decohering qubit that has par-
ticularly nice symmetry properties. We can describe it by saying that,
with probability 1− p the qubit remains intact, while with probability p
an “error” occurs. The error can be of any one of three types, where each
type of error is equally likely. If {|0〉, |1〉} is an orthonormal basis for the
qubit, the three types of errors can be characterized as:

1. Bit flip error: |0〉7→|1〉|1〉7→|0〉 or |ψ〉 7→ σ1|ψ〉,σ1 =
(

0 1
1 0

)
,

2. Phase flip error: |0〉7→|0〉
|1〉7→−|1〉 or |ψ〉 7→ σ3|ψ〉,σ3 =

(
1 0

0 −1

)
,

3. Both: |0〉7→+i|1〉
|1〉7→−i|0〉 or |ψ〉 7→ σ2|ψ〉,σ2 =

(
0 −i
i 0

)
.

If an error occurs, then |ψ〉 evolves to an ensemble of the three states
σ1|ψ〉,σ2|ψ〉,σ3|ψ〉, all occurring with equal likelihood.

Unitary representation. The depolarizing channel mapping qubit A to A
can be realized by an isometry mapping A to AE, where E is a four-
dimensional environment, acting as

UA→AE : |ψ〉A 7→
√

1− p |ψ〉A ⊗ |0〉E

+

√
p

3
(σ1|ψ〉A ⊗ |1〉E + σ2|ψ〉A ⊗ |2〉E + σ3|ψ〉A ⊗ |3〉E) .

(3.83)

The environment evolves to one of four mutually orthogonal states that
“keep a record” of what transpired; if we could only measure the environ-
ment in the basis {|a〉E , a = 0, 1, 2, 3}, we would know what kind of error
had occurred (and we would be able to intervene and reverse the error).
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Operator-sum representation. To obtain an operator-sum representation
of the channel, we evaluate the partial trace over the environment in the
{|a〉E} basis. Then

Ma = E〈a|U , (3.84)

so that

M0 =
√

1− p I, M1 =

√
p

3
σ1, M2 =

√
p

3
σ2, M3 =

√
p

3
σ3. (3.85)

Using σ2
i = I, we can readily check the normalization condition∑

a

M †
aMa =

(
(1− p) + 3

p

3

)
I = I. (3.86)

A general initial density matrix ρ of the qubit evolves as

ρ 7→ ρ′ = (1− p)ρ+
p

3
(σ1ρσ1 + σ2ρσ2 + σ3ρσ3) . (3.87)

where we are summing over the four (in principle distinguishable) possible
final states of the environment.

Relative-state representation. We can also characterize the channel by in-
troducing a reference qubit R and describing how a maximally-entangled
state of the two qubits RA evolves, when the channel acts only on A.
There are four mutually orthogonal maximally entangled states, which
may be denoted

|φ+〉 =
1√
2

(|00〉+ |11〉),

|φ−〉 =
1√
2

(|00〉 − |11〉),

|ψ+〉 =
1√
2

(|01〉+ |10〉),

|ψ−〉 =
1√
2

(|01〉 − |10〉). (3.88)

If the initial state is |φ+〉RA, then when the depolarizing channel acts on
qubit A, the entangled state evolves as

|φ+〉〈φ+| 7→ (1− p)|φ+〉〈φ+|+ p

3

(
|ψ+〉〈ψ+|+ |ψ−〉〈ψ−|+ |φ−〉〈φ−|

)
.

(3.89)
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The “worst possible” quantum channel has p = 3/4, for in that case the
initial entangled state evolves as

|φ+〉〈φ+| 7→ 1

4

(
|φ+〉〈φ+|+ |φ−〉〈φ−|+ |ψ+〉〈ψ+|+ |ψ−〉〈ψ−|

)
=

1

4
I;

(3.90)

it becomes the maximally mixed density matrix on RA. By the relative-
state method, then, we see that a pure state |ψ〉 of qubit A evolves as

(|ψ〉〈ψ|)A 7→ R〈ψ∗|2
(

1

4
IRA

)
|ψ∗〉R =

1

2
IA, (3.91)

where the factor of two has been inserted because here we have used the
standard normalization of the entangled states, instead of the unconven-
tional normalization used in our earlier discussion of the relative-state
method. We see that, for p = 3/4, the qubit is mapped to the maximally
mixed density operator on A, irrespective of the value of the initial state
|ψ〉A. It is as though the channel threw away the initial quantum state,
and replaced it by completely random junk.

An alternative way to express the evolution of the maximally entangled
state is

|φ+〉〈φ+| 7→
(

1− 4

3
p

)
|φ+〉〈φ+|+ 4

3
p

(
1

4
IRA

)
. (3.92)

Thus instead of saying that an error occurs with probability p, with errors
of three types all equally likely, we could instead say that an error occurs
with probability 4/3p, where the error completely “randomizes” the state
(at least we can say that for p ≤ 3/4). The existence of two natural ways
to define an “error probability” for this channel can sometimes cause
confusion.

One useful measure of how well the channel preserves the original quan-
tum information is called the “entanglement fidelity” Fe. It quantifies how
“close” the final density matrix is to the original maximally entangled
state |φ+〉 after the action of I ⊗ E :

Fe = 〈φ+|ρ′|φ+〉. (3.93)

For the depolarizing channel, we have Fe = 1 − p, and we can interpret
Fe as the probability that no error occurred.

Bloch-sphere representation. It is also instructive to see how the depolar-
izing channel acts on the Bloch sphere. An arbitrary density matrix for
a single qubit can be written as

ρ(~P ) =
1

2

(
I + ~P · ~σ

)
, (3.94)
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where ~P is the “spin polarization” of the qubit. The depolarizing channel
maps this state to

ρ′ =

(
1− 4

3
p

)
ρ+

4

3
pI = ρ(~P ′) (3.95)

where

~P ′ =

(
1− 4

3
p

)
~P (3.96)

Hence the Bloch sphere contracts uniformly under the action of the chan-
nel (for p ≤ 3/4); the spin polarization shrinks by the factor 1− 4

3p (which
is why we call it the depolarizing channel).

Reversibility? Why do we say that the channel is not invertible? Evi-
dently we can reverse a uniform contraction of the sphere with a uniform
inflation. But the trouble is that the inflation of the Bloch sphere is not
a channel, because it is not positive. Inflation will take some values of ~P
with |~P | ≤ 1 to values with |~P | > 1, and so will take a density operator
to an operator with a negative eigenvalue. Decoherence can shrink the
ball, but no physical process can blow it up again! A channel running
backwards in time is not a channel.

3.4.2 Dephasing channel

Our next example is the dephasing channel, also called the phase-damping
channel. This case is particularly instructive, because it provides a re-
vealing caricature of decoherence in realistic physical situations, with all
inessential mathematical details stripped away.

Unitary representation. An isometric representation of the channel is

|0〉A 7→
√

1− p |0〉A ⊗ |0〉E +
√
p |0〉A ⊗ |1〉E ,

|1〉A 7→
√

1− p |1〉A ⊗ |0〉E +
√
p |1〉A ⊗ |2〉E . (3.97)

In this case, unlike the depolarizing channel, qubit A does not make any
transitions in the {|0〉, |1〉} basis. Instead, the environment “scatters” off
of the qubit occasionally (with probability p), being kicked into the state
|1〉E if A is in the state |0〉A and into the state |2〉E if A is in the state
|1〉A. Furthermore, also unlike the depolarizing channel, the channel picks
out a preferred basis for qubit A; the basis {|0〉, |1〉} is the only basis in
which bit flips never occur.
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Kraus operators. Evaluating the partial trace over E in the
{|0〉E , |1〉E , |2〉E} basis, we obtain the Kraus operators

M0 =
√

1− p I, M1 =
√
p

(
1 0

0 0

)
, M2 =

√
p

(
0 0

0 1

)
. (3.98)

It is easy to check that M2
0 +M2

1 +M2
2 = I. In this case, three Kraus

operators are not really needed; a representation with two Kraus operators
is possible. Expressing

M1 =

√
p

2
(I + σ3) , M2 =

√
p

2
(I − σ3) , (3.99)

we find

E(ρ) =
∑
a

MaρMa =

(
1− 1

2
p

)
ρ+

1

2
p σ3ρσ3, (3.100)

so an alternative description of the channel is that σ3 is applied with
probability p/2 and nothing happens with probability (1 − p/2). An
initial density matrix ρ evolves to

E
(
ρ00 ρ01

ρ10 ρ11

)
=

(
ρ00 (1− p)ρ01

(1− p)ρ10 ρ11

)
; (3.101)

the on-diagonal terms in ρ remain invariant while the off-diagonal terms
decay.

Continuous dephasing. We may also consider dephasing that occurs con-
tinuously in time. Suppose that the probability of a scattering event per
unit time is Γ, so that p = Γ∆t� 1 when a brief time interval ∆t elapses.
The evolution over a time t = n∆t is governed by En (E repeated n times
in succession), so that the off-diagonal terms in the density operator be-
come suppressed by

(1− p)n = (1− Γt/n)n → e−Γt, (3.102)

taking the limit n → ∞ with t fixed. Thus, if we prepare an initial pure
state α|0〉+ β|1〉, then after a time t� Γ−1, the density operator evolves
as (

|α|2 αβ∗

α∗β |β|2
)
7→
(
|α|2 0

0 |β|2
)

; (3.103)

The state decoheres, in the preferred basis {|0〉, |1〉}.



3.4 Three quantum channels 29

Bloch-sphere representation. We can compute how the polarization of
the density operator evolves using the representation of the channel
eq.(3.100), finding

ρ(~P ) =
1

2

(
I + ~P · ~σ

)
7→ ρ(~P ′) (3.104)

where
P ′1,2 = (1− p)P1,2, P ′3 = P3; (3.105)

the Bloch ball shrinks to a prolate spheroid aligned with the z axis. Under
continuous dephasing, the ball deflates in the x-y plane, degenerating to
the z axis in the limit of large Γt.

You might wonder whether there is a quantum channel which causes
just one component of the polarization to decay, mapping the Bloch ball
to an oblate spheroid which touches the Bloch sphere along its equator.
In fact no such map can be completely positive (the no-pancake theorem).
Up to a unitary change of basis, a pancake map shrinks the value of P2

while preserving P1 and P3, which is equivalent to taking the transpose of
the density operator with nonzero probability, and we have seen in §3.2.6
that the transpose map is not completely positive.

Interpretation. We might interpret the phase-damping channel as describ-
ing a heavy “classical” particle (e.g., an interstellar dust grain) interacting
with a background gas of light particles (e.g., the 3K microwave photons).
We can imagine that the dust is initially prepared in a superposition of
position eigenstates |ψ〉 = 1√

2
(|x〉 + |−x〉) (or more realistically a super-

position of position-space wavepackets with little overlap). We might be
able to monitor the behavior of the dust particle, but it is hopeless to
keep track of the quantum state of all the photons that scatter from the
particle; for our purposes, the quantum state of the particle is described
by the density matrix ρ obtained by tracing over the photon degrees of
freedom.

Our analysis of the phase damping channel indicates that if photons are
scattered by the dust particle at a rate Γ, then the off-diagonal terms in
ρ decay like exp(−Γt), and so become completely negligible for t� Γ−1.
At that point, the coherence of the superposition of position eigenstates is
completely lost – there is no chance that we can recombine the wavepack-
ets and induce them to interfere. If we attempt to do a double-slit in-
terference experiment with dust grains, we will not see any interference
pattern if it takes a time t� Γ−1 for the grain to travel from the source
to the screen.

The dust grain is heavy. Because of its large inertia, its state of motion
is little affected by the scattered photons. Thus, there are two disparate
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time scales relevant to its dynamics. On the one hand, there is a damping
time scale, the time for a significant amount of the particle’s momentum
to be transfered to the photons, which is a long time for such a heavy
particle. On the other hand, there is the decoherence time scale. In this
model, the time scale for decoherence is of order Γ, the time for a single
photon to be scattered by the dust grain, which is far shorter than the
damping time scale. For a macroscopic object, decoherence is fast.

As we have already noted, the phase-damping channel picks out a pre-
ferred basis for decoherence, which in our “interpretation” we have as-
sumed to be the position-eigenstate basis. Physically, decoherence prefers
the spatially localized states of the dust grain because the interactions
of photons and grains are localized in space. Grains in distinguishable
positions tend to scatter the photons of the environment into mutually
orthogonal states.

Even if the separation between the “grains” were so small that it could
not be resolved very well by the scattered photons, the decoherence pro-
cess would still work in a similar way. Perhaps photons that scatter off
grains at positions x and −x are not mutually orthogonal, but instead
have an overlap

〈γ + |γ−〉 = 1− ε, ε� 1. (3.106)

The phase-damping channel would still describe this situation, but with p
replaced by pε (if p is still the probability of a scattering event). Thus, the
decoherence rate would become Γdec = εΓscat, where Γscat is the scattering
rate.

The intuition we distill from this simple model applies to a wide va-
riety of physical situations. A coherent superposition of macroscopically
distinguishable states of a “heavy” object decoheres very rapidly com-
pared to its damping rate. The spatial locality of the interactions of the
system with its environment gives rise to a preferred “local” basis for de-
coherence. The same principle applies to Schrödinger’s unfortunate cat,
delicately prepared in a coherent superposition of its dead state and its
alive state, two states that are easily distinguished by spatially localized
probes. The cat quickly interacts with its environment, which is “scat-
tered” into one of two mutually orthogonal states perfectly correlated
with the cat’s state in the {|dead〉, |alive〉} basis, thus transforming the
cat into an incoherent mixture of those two basis states.

Visibility. On the other hand, for microscopic systems the time scale for
decoherence need not be short compared to dynamical time scales. Con-
sider for example a single atom, initially prepared in a uniform superposi-
tion of its ground state |0〉 and an excited state |1〉 with energy ~ω above
the ground state energy. Neglecting decoherence, after time t the atom’s
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state will be

|ψ(t)〉 =
1√
2

(
|0〉+ e−iωt|1〉

)
. (3.107)

If dephasing occurs in the {|0〉, |1〉} basis with rate Γ, the off-diagonal
terms in the density operator decay, yielding the density operator

ρ(t) =
1

2

(
1 eiωte−Γt

e−iωte−Γt 1

)
. (3.108)

If after time t we measure the atom in the basis

|±〉 =
1√
2

(|0〉 ± |1〉) , (3.109)

the probability of the + outcome is

Prob(+, t) = 〈+|ρ(t)|+〉 =
1

2

(
1 + e−Γt cosωt

)
. (3.110)

In principle this time dependence of the probability can be measured by
varying the time t between the preparation and measurement, and by re-
peating the experiment many times for each t to estimate the probability
with high statistical confidence. The decoherence rate Γ can be deter-
mined experimentally by fitting the declining visibility of the coherent
oscillations of Prob(+, t) to a decaying exponential function of t.

3.4.3 Amplitude-damping channel

The amplitude-damping channel is a schematic model of the decay of an
excited state of a (two-level) atom due to spontaneous emission of a pho-
ton. By detecting the emitted photon (“observing the environment”) we
can perform a POVM that gives us information about the initial prepa-
ration of the atom.

Unitary representation. We denote the atomic ground state by |0〉A and
the excited state of interest by |1〉A. The “environment” is the electro-
magnetic field, assumed initially to be in its vacuum state |0〉E . After we
wait a while, there is a probability p that the excited state has decayed to
the ground state and a photon has been emitted, so that the environment
has made a transition from the state |0〉E (“no photon”) to the state |1〉E
(“one photon”). This evolution is described by a unitary transformation
that acts on atom and environment according to

|0〉A ⊗ |0〉E 7→ |0〉A ⊗ |0〉E
|1〉A ⊗ |0〉E 7→

√
1− p |1〉A ⊗ |0〉E +

√
p |0〉A ⊗ |1〉E . (3.111)

(Of course, if the atom starts out in its ground state, and the environment
in its vacuum state, then no transition occurs.)
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Kraus operators. By evaluating the partial trace over the environment in
the basis {|0〉E , |1〉E}, we find the Kraus operators

M0 =

(
1 0
0
√

1− p

)
, M1 =

(
0
√
p

0 0

)
, (3.112)

and we can check that

M †
0M0 +M †

1M1 =

(
1 0
0 1− p

)
+

(
0 0
0 p

)
= I. (3.113)

The operator M1 induces a “quantum jump,” the decay from |1〉A to
|0〉A, and M0 describes how the state changes if no jump occurs. The
density matrix evolves as

ρ 7→ E(ρ) = M0ρM
†
0 +M1ρM

†
1

=

(
ρ00

√
1− p ρ01√

1− p ρ10 (1− p) ρ11

)
+

(
pρ11 0

0 0

)
=

(
ρ00 + pρ11

√
1− p ρ01√

1− p ρ10 (1− p) ρ11

)
. (3.114)

Time dependence. If Γ is the spontaneous decay rate per unit time, then
the decay occurs with probability p = Γ∆t � 1 in a small time interval
∆t. We find the density operator after time t = n∆t by applying the
channel n times in succession. The ρ11 matrix element then decays as

ρ11 7→ (1− p)nρ11, where (1− p)n = (1− Γt/n)n → e−Γt, (3.115)

the expected exponential decay law, while the off-diagonal entries decay
by the factor (1− p)n/2 = e−Γt/2; hence we find

ρ(t) =

(
ρ00 +

(
1− e−Γt

)
ρ11 e−Γt/2ρ01

e−Γt/2 ρ10 e−Γtρ11

)
(3.116)

It is customary to use “T1” to denote the exponential decay time for the
excited population, and to use “T2” to denote the exponential decay time
for the off-diagonal terms in the density operator. In some systems where
dephasing is very rapid T2 is much shorter than T1, but we see that for the
amplitude-damping channel these two times are related and comparable:

T2 = 2Γ−1 = 2T1. (3.117)

By the time that t � T1, the atom is in its ground state with high
probability (ρ00(t) ≈ 1).
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Watching the environment. So far we have described the evolution of
the qubit under the assumption that the state of the environment is not
observed. But now suppose we surround the atom with photon detectors,
so we know whether a photon has been emitted or not. Rather than a
channel, then, we consider a POVM performed on the atom.

Returning to the joint unitary dynamics of system and environment,
we see that a coherent superposition of the atomic ground and excited
states evolves as

(α|0〉A + β|1〉A)⊗ |0〉E
7→ (α|0〉A + β

√
1− p |1〉A)⊗ |0〉E + β

√
p |0〉A ⊗ |1〉E ; (3.118)

To describe the system evolving continuously in time, we may consider
applying this unitary map n� 1 times in succession, but where photons
emitted at different times are perfectly distinguishable and hence orthog-
onal. The resulting POVM has n+1 Kraus operators, associated with the
vacuum state of the environment and n different possible single photon
states:

M0 =

(
1 0

0
√

(1− p)n

)
, Mk =

(
0
√

(1− p)k−1p
0 0

)
, (3.119)

for k = 1, 2, . . . n. Taking the continuous-time limit we find that if no
spontaneous decay occurs for time t, the corresponding Kraus operator is

M0 =

(
1 0

0 e−Γt/2

)
. (3.120)

If we detect a photon (and so project out a single-photon state of the
environment), then we have prepared the state |0〉A of the atom. Not only
that, we have prepared a state in which we know with certainty that the
initial atomic state was the excited state |1〉A; if the atom had started out
in the ground state than it could not have decayed and no photon could
have been detected.

On the other hand, if we detect no photon, and our photon detector
has perfect efficiency, then we have projected out the vacuum state of the
environment, and so have prepared the atomic state

M0 (α|0〉+ β|1〉) = α|0〉+ e−Γt/2β|1〉, (3.121)

up to a normalization factor. As time goes by, the a posteriori quantum
state has larger and larger overlap with the ground state, because if it
had started out in the excited state it should have decayed by now. In
the limit t→∞ our POVM becomes an orthogonal measurement: either
a photon is detected, in which case the initial state of the atom must have
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been |1〉, or no photon is detected, in which case the initial state must
have been |0〉. It’s odd but true: we can project out the state |0〉 of the
atom by not detecting anything.

3.5 Master equations for open quantum systems

3.5.1 Markovian evolution

Quantum channels provide a general description of the evolution of den-
sity operators, including the evolution of pure states to mixed states (de-
coherence). In the same sense, unitary transformations provide a general
description of coherent quantum evolution. But in the case of coherent
evolution, we often find it very convenient to characterize the dynamics
of a quantum system with a Hamiltonian, which describes the evolution
over an infinitesimal time interval. The dynamics is then encoded in a
differential equation, the Schrödinger equation, and we may calculate the
evolution over a finite time interval by integrating the equation, that is, by
piecing together the evolution over many infinitesimal intervals. Likewise,
it is often possible to describe the (not necessarily coherent) evolution of
a density operator, at least to a good approximation, by a differential
equation which is called the master equation.

It is not obvious that there should be a differential equation that de-
scribes the decoherence of an open system. Such a description is possible
only if the evolution of the quantum system is Markovian, that is, local
in time. For the evolution of the density operator ρ(t) to be governed
by a (first-order) differential equation in t, ρ(t+ dt) must be completely
determined by ρ(t).

In the case of an open system A, we are to imagine that its evolution is
actually unitary on the extended system AE, where E is the environment.
But though the evolution of AE may be governed by a Schrödinger equa-
tion, that’s not enough to ensure that the time evolution is Markovian
for A by itself. The trouble is that information can flow from A to E and
then return at a later time. In that case the density operator ρA(t+ dt)
is not fully determined by ρA(t); we need to know ρA at earlier times as
well.

This quandary arises because information flow is a two-way street. An
open system (whether classical or quantum) is dissipative because infor-
mation and energy can flow from the system to the environment. But that
means that information can also flow back from environment to system,
resulting in non-Markovian fluctuations of the system. This inescapable
connection underlies the fluctuation-dissipation theorem, a widely appli-
cable tool of statistical physics.

For any open system these fluctuations are inevitable, and an exact
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Markovian description of quantum dynamics is impossible. Nevertheless,
a Markovian description can be a very good approximation if there is a
clean separation between the typical correlation time of the fluctuations
and the time scale of the evolution that we want to follow. Crudely
speaking, we may denote by (∆t)env the time it takes for the environment
to “forget” information it acquired from the system — after time (∆t)env

we can regard that information as lost forever, and neglect the possibility
that the information may return to influence the subsequent evolution of
the system.

To describe the evolution we “coarse-grain” in time, perceiving the dy-
namics through a filter that screens out the high frequency components
of the motion with ω � (∆tcoarse)

−1. An approximately Markovian de-
scription should be possible for (∆t)env � (∆t)coarse; we may neglect
the memory of the reservoir if we are unable to resolve its effects. This
Markovian approximation is useful if the time scale of the dynamics that
we want to observe is long compared to (∆t)coarse, for example if the
damping time scale (∆t)damp satisfies

(∆t)damp � (∆t)coarse � (∆t)env. (3.122)

This is a good approximation in some physical settings, like an atom
interacting with the radiation field, but more dubious in other cases, like
an electron spin interacting with nuclear spins in a semiconductor.

We could attempt to derive the master equation starting with the
Schrödinger equation for AE, treating the coupling between A and E
in time-dependent perturbation theory, and carefully introducing a fre-
quency cutoff, but we won’t do that here. Instead let’s take it for granted
that the dynamics is Markovian, and use the theory of quantum channels
to infer the form of the master equation.

3.5.2 The Liouvillian

For a closed quantum system, time evolution is governed by a self-adjoint
Hamiltonian H according to

|ψ(t+ dt)〉 = (I − idtH) |ψ(t)〉, (3.123)

and correspondingly the density operator evolves as

ρ(t+ dt) = ρ(t)− idt[H,ρ(t)]. (3.124)

In the case of an open quantum system, Markovian evolution for the
infinitesimal time interval dt may be expressed as

ρ(t+ dt) = Edt(ρ(t)), (3.125)
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where Edt is a quantum channel. By adopting this Markovian form, we
take the view that, after each infinitesimal time increment in the joint
evolution of the system and its environment, the state of the environment
is discarded and replaced by a fresh state of the environment unentan-
gled with the system. We already made this assumption implicitly when
discussing continuous-time dephasing and spontaneous decay in §3.4.

Expanding Edt to linear order,

Edt = I + dtL (3.126)

we find
ρ̇ = L(ρ), (3.127)

where the linear map L generating time evolution is called the Liouvillian
or Lindbladian. This evolution equation has the formal solution

ρ(t) = lim
n→∞

(
1 +
Lt
n

)n
(ρ(0)) = eLt(ρ(0)) (3.128)

if L is time independent.
The channel has an operator-sum representation

ρ(t+ dt) = Edt(ρ(t)) =
∑
a

Maρ(t)M †
a = ρ(t) +O(dt), (3.129)

where, if we retain only terms up to linear order in dt, we may assume
without loss of generality that M0 = I + O(dt), and that Ma is of
order

√
dt for a > 0. Each of the Kraus operators M1,2,... describes a

possible “quantum jump” that the system might undergo, which occurs
during time interval dt with probability O(dt), and M0 describes how the
system evolves when no jump occurs. We may write

M0 = I + (−iH +K)dt,

Ma =
√
dt La, (3.130)

where H and K are both hermitian and La,H, and K are all zeroth
order in dt. In fact, we can determine K by invoking the Kraus-operator
completeness relation; keeping terms up to linear order in O(dt), we find

I =
∑
a

M †
aMa = I + dt

(
2K +

∑
a>0

L†aLa

)
+ · · · , (3.131)

or

K = −1

2

∑
a>0

L†aLa. (3.132)
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Substituting into eq. (3.129), we obtain the Lindblad master equation:

ρ̇ = L(ρ) = −i[H,ρ] +
∑
a>0

(
LaρL

†
a −

1

2
L†aLaρ−

1

2
ρL†aLa

)
. (3.133)

This is the general Markovian evolution law for quantum states in the
Schrödinger picture, assuming time evolution is a trace-preserving com-
pletely positive linear map. The first term in L(ρ) is the familiar Hamilto-
nian term generating unitary evolution. The other terms describe the pos-
sible transitions that the system may undergo due to interactions with the
environment. The operators La are called Lindblad operators or quantum
jump operators. Each LaρL

†
a term induces one of the possible quantum

jumps, while the terms −1/2L†aLaρ−1/2ρL†aLa are needed to normalize
properly the case in which no jumps occur.

Alternatively, we can describe the evolution using the Heisenberg
picture. Then instead of eq.(3.129), the density operator is time-
independent, while an operator A evolves according to

A(t+ dt) = E∗dt(A(t)) =
∑
a

M †
aA(t)Ma, (3.134)

and hence

Ȧ = L∗(A) = i[H,A] +
∑
a>0

(
L†aALa −

1

2
L†aLaA−

1

2
AL†aLa

)
.

(3.135)

Heisenberg-picture time evolution is unital rather than trace preserving;
the identity operator I does not evolve.

As for any nonunitary quantum channel, we have the freedom to rede-
fine the Kraus operators in the operator-sum representation of Edt, replac-
ing {Ma} by operators {Nµ} which differ by a unitary change of basis.
In particular, invoking this freedom for the jump operators (while leaving
M0 untouched), we may replace {La} by {L′µ} where

L′µ =
∑
a

VµaLa (3.136)

and Vµa is a unitary matrix. We say that these two ways of choosing
the jump operators are two different unravelings of the same Markovian
dynamics.

The master equation describes what happens when the system interacts
with an unobserved environment, but we may also consider what happens
if the environment is continuously monitored. In that case each quantum
jump is detected; we update the quantum state of the system whenever
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a jump occurs, and an initial pure state remains pure at all later times.
Specifically, a jump of type a occurs during the interval (t, t + dt) with
probability

Prob(a) = dt〈ψ(t)|L†aLa|ψ(t)〉, (3.137)

and when a type-a jump is detected the updated state is

|ψ(t+ dt)〉 =
La|ψ(t)〉
‖La|ψ(t)〉‖

, (3.138)

while when no jump occurs the state evolves as

|ψ(t+ dt)〉 =
M0|ψ(t)〉
‖M0|ψ(t)〉‖

. (3.139)

This stochastic Schrödinger evolution can be numerically simulated; each
simulated quantum trajectory is different, but averaging over a sample of
many such trajectories reproduces the evolution of the density operator as
described by the master equation. Simulating the stochastic Schrödinger
equation may have advantages over simulating the master equation, since
it is less costly to follow the evolution of a d-dimensional state vector than
a d× d density matrix.

3.5.3 Damped harmonic oscillator

As an example to illustrate the master equation, consider the case of a
harmonic oscillator coupled to the electromagnetic field via

H ′ =
∑
k

gk(ab
†
k + a†bk), (3.140)

where a is the annihilation operator of the oscillator, b†k creates a pho-
ton in mode k, and gk is a coupling constant. Let’s also suppose that
the environment is at zero temperature; then the excitation level of the
oscillator can cascade down by successive emission of photons, but no
absorption of photons will occur. If each photon, once emitted, never
interacts again with the oscillator, the evolution is Markovian, and there
is only one Lindblad jump operator:

L =
√

Γa. (3.141)

Here Γ is the rate for the oscillator to decay from the first excited (n = 1)
state to the ground (n = 0) state, which can be computed as Γ =

∑
k Γk,

where Γk is the rate for emission into mode k. The rate for the decay
from level n to n−1 is nΓ. (The nth level of excitation of the oscillator
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may be interpreted as a state of n noninteracting particles; the rate is nΓ
because any one of the n particles can decay.)

The Schrödinger-picture master equation in the Lindblad form becomes

ρ̇ = −i[H0,ρ] + Γ

(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)
, (3.142)

whereH0 = ωa†a is the Hamiltonian of the oscillator, while in the Heisen-
berg picture an operator A evolves according to

Ȧ = i[H0,A] + Γ

(
a†Aa− 1

2
a†aA− 1

2
Aa†a

)
. (3.143)

The jump term describes the damping of the oscillator due to photon
emission.

To study the effect of the jumps, consider the Heisenberg-picture evolu-
tion of the annihilation operator a(t). We can solve the master equation
by making an ansatz a(t) = f(t)a, where f(t) is a function of time, and
then checking the self-consistency of the ansatz. Plugging into eq.(3.143)
we find

ḟ(t)a = iωf(t)[a†a,a] + Γf(t)

(
a†aa− 1

2
a†aa− 1

2
aa†a

)
=

(
iω +

Γ

2

)
f(t)[a†,a]a =⇒ ḟ(t) = −

(
iω +

Γ

2

)
f(t), (3.144)

which integrates to f(t) = e−iωt−Γt/2f(0). We conclude that

a(t) = e−iωt−Γt/2a(0), (3.145)

and therefore the occupation number of the oscillator n = a†a decays in
the Heisenberg picture according to

n(t) = e−Γtn(0). (3.146)

Thus Γ is indeed the damping rate of the oscillator. If we interpret the nth
excitation state of the oscillator as a state of n noninteracting particles,
each with a decay probability Γ per unit time, then eq. (3.146) is just the
exponential law satisfied by the population of decaying particles.

More interesting is what the master equation tells us about decoherence.
In our amplitude damping model, it is the annihilation operator a and
its adjoint that appear in the coupling H ′ of oscillator to environment,
so we can anticipate that the oscillator’s state will decohere in the basis
of a eigenstates. The coherent state

|α〉 = e−|α|
2/2eαa

† |0〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉, (3.147)
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is the normalized eigenstate of a with complex eigenvalue α. The operator
a is not Hermitian, and two coherent states with distinct eigenvalues α
and β are not orthogonal; rather

|〈α|β〉|2 = e−|α|
2
e−|β|

2
e2Re(α∗β)

= exp(−|α− β|2), (3.148)

so the overlap is very small when |α− β| is large.
The solution to the Schrödinger-picture master equation is worked out

in Exercise 3.9, where we find that an initial coherent state remains co-
herent, but with a decaying amplitude; after time t the state |α〉 evolves
as

|α〉 7→ |αe−Γt/2〉 (3.149)

(in the rotating frame where the Hamiltonian evolution of the oscillator
has been transformed away). We may also consider what happens when
the initial state is a superposition of coherent states (a “cat state”)

|ψ〉 = Nα,β(|α〉+ |β〉), (3.150)

(where Nα,β is a normalization factor), or

ρ = N2
α,β (|α〉〈α|+ |α〉〈β|+ |β〉〈α|+ |β〉〈β|) . (3.151)

The off-diagonal terms in this density operator evolve as

|α〉〈β| 7→ eiφ(α,β)e−Γt|α−β|2/2|αe−Γt/2〉〈βe−Γt/2|, (3.152)

where eiφ(α,β) is a phase factor. Thus the off-diagonal terms decay expo-
nentially with time, at a rate

Γdecohere =
1

2
Γ|α− β|2 (3.153)

proportional to |α − β|2, the square of the separation of the two coher-
ent states in phase space; the decoherence rate is much larger than the
damping rate Γ for |α − β|2 � 1. This behavior is easy to interpret.
The expectation value of the occupation number n in a coherent state
is 〈n〉 = 〈α|a†a|α〉 = |α|2. Therefore, if α, β have comparable moduli
but significantly different phases (as for a superposition of minimum un-
certainty wave packets centered at positions x and −x), the decoherence
rate is comparable to Γ〈n〉, the rate for emission of a single photon. This
rate is very large compared to the rate for a significant fraction of the
oscillator energy to be dissipated, if n is large.

We can also consider an oscillator coupled to an environment with a
nonzero temperature. Again, the decoherence rate is roughly the rate for a
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single photon to be emitted or absorbed, but the rate may be much faster
than at zero temperature. Because the photon modes with frequency
comparable to the oscillator frequency ω have a thermal occupation num-
ber

nγ ≈
T

~ω
, (3.154)

(for T � ~ω), the interaction rate is further enhanced by the factor nγ .
For an oscillator with energy E = ~ωnosc, we have

Γdecohere

Γdamp
∼ noscnγ ∼

E

~ω
T

~ω

∼ mω2x2

~ω
T

~ω
∼ x2mT

~2
∼ x2

λ2
T

, (3.155)

where x is the amplitude of oscillation and λT is the thermal de Broglie
wavelength of the oscillating object. For macroscopic objects, decoherence
is really fast.

3.6 Non-Markovian noise

3.6.1 Gaussian phase noise

The master equation describes the evolution of a quantum system subject
to Markovian noise, but in some experimental systems the Markovian
approximation is not very accurate. In this section we will discuss some
of the features of decoherence for a system subjected to non-Markovian
noise.

As a simple example, consider a single qubit with energy eigenstates |0〉
and |1〉, where the energy splitting between the two states fluctuates. For
example, the qubit could be a spin-1

2 particle in a magnetic field pointing
along the z-axis, where the magnetic field is not perfectly controlled in
the laboratory. The Hamiltonian for this system is

H = −1

2
ω01σ3 −

1

2
f(t)σ3 , (3.156)

where f(t) is the fluctuating component of the magnetic field. This is
a model of classical noise, arising not because the system interacts with
an unobserved environment, but rather because a term in the system’s
Hamiltonian fluctuates.

The function f is treated stochastically; that is, we consider an ensem-
ble of possible functions {f}, each with an assigned probability weight
µ(f). We imagine that the actual f(t) in each run of the experiment is
selected by sampling from this distribution, and predict the observed be-
havior of the system by averaging over the distribution µ(f). The model is
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particularly simple because the unperturbed Hamiltonian H0 = 1
2ω01σ3

commutes with the noise term Hf = 1
2f(t)σ3, and in fact we can trans-

form H0 away by going to the interaction picture.
The fluctuations induce dephasing of the qubit in the energy eigenstate

basis. To analyze the dephasing, we will make a further simplifying as-
sumption, that the noise is Gaussian. Whether the noise is classical of
quantum, this Gaussian approximation often applies in laboratory situ-
ations where the system is weakly coupled to many different fluctuating
variables in the environment. We denote averaging over the distribution
µ(f) by [·], and assume the distribution to be stationary with mean zero;
that is [f(t)] = 0, and [f(t)f(t′)] = K(t − t′) is a function only of the
difference t − t′, which is called the covariance of the distribution. The
Gaussian distribution can be characterized by its generating functional
Z[J ], which can be expressed in terms of the covariance as

Z[J ] ≡
[
e
∫
dtJ(t)f(t)

]
f

= exp

(
1

2

∫
dtdt′J(t)K(t− t′)J(t′)

)
. (3.157)

An initial density operator ρ(0) evolves in time T to

ρ(T ) =

[
exp

(
i

∫ T

o

1

2
f(t)σ3

)
ρ(0) exp

(
−i
∫ T

o

1

2
f(t)σ3

)]
. (3.158)

The energy eigenstates |0〉〈0| or |1〉〈1| are not affected, but using
eq.(3.157) we see that the coefficients of the off-diagonal entries |0〉〈1|
and |1〉〈0| decay by the factor

exp

(
−1

2

∫ T

0
dt

∫ T

0
dt′K(t− t′)

)
= exp

(
−1

2

∫ T

0
dt

∫ T

0
dt′
∫ ∞
−∞

dω

2π
e−iω(t−t′)K̃(ω)

)
; (3.159)

here we have introduced the Fourier transform K̃(ω) of the covariance
K(t), which is said to be the spectral density or power spectrum of the
noise. Doing the t and t′ integrals we obtain

exp

(
−1

2

∫ ∞
−∞

dω

2π
K̃(ω)WT (ω)

)
(3.160)

where WT (ω) is the smooth window function

WT (ω) =

∣∣∣∣∫ T

0
dt e−iωt

∣∣∣∣2 =
4

ω2
sin2(ωT/2), (3.161)

which has most of its support on the interval [0, 2π/T ].
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Assuming that K̃(ω = 0) is finite, we expect that for T sufficiently
large, K̃(ω) can be regarded as approximately constant in the region

where WT (ω) is supported. Using
∫∞
−∞ dx

sin2 x
x2

= π, we then obtain the

decay factor e−Γ2T , where the dephasing rate Γ2 is

Γ2 = K̃(ω = 0). (3.162)

(Here we’ve assumed that K̃(ω) is continuous at ω = 0 — otherwise
we should average its limiting values as ω approaches zero from positive
and negative values.) If the spectral density is flat (“white noise”), this
formula for Γ2 applies at any time T , but in general, the time scale for
which dephasing can be described by a rate Γ2 depends on the shape of
the noise’s spectral density. In effect, an experimentalist who measures
the dephasing time T2 = Γ−1

2 of a qubit is probing the noise power at low
frequency.

Crudely speaking, we expect K̃(ω) to be roughly constant in the inter-
val [0, ωc], where ωc = 2π/τc, and τc is a characteristic “autocorrelation”
or “memory” time of the noise. That is, τc is chosen so that the corre-
lation function K(t − t′) is small for |t − t′| � τc. Thus we see that one
can speak of a “dephasing rate” Γ2 (and a corresponding dephasing time
T2 = Γ−1

2 ) if the evolution is sufficiently “coarse-grained” in time. For the
purpose of describing evolution over a time period T � τc, the window
function WT (ω) is mostly supported within the interval [0, ωc] where K̃(ω)
is approximately constant; therefore the non-Markovian noise model can
be replaced by a corresponding effective Markovian model in which the
memory of the fluctuations can be neglected, as in our analysis of dephas-
ing in §3.4.2. But for T � τc such a description may not be applicable.

3.6.2 Spin echo

Strategies for mitigating the damaging effects of the noise become possible
when the noise autocorrelation time τc is long compared to the time scale
over which the experimentalist can manipulate the system. For example,
when observing the dephasing of a spin evolving for time T , we may apply
a fast pulse that flips the spin about the x-axis at time T/2. Then the
effects of low-frequency phase noise during the second half of the evolution
will tend to compensate for the effects of the phase noise during the first
half. This trick is called the spin echo phenomenon.

If we use this trick, the damping factor applied to |0〉〈1| is again given
by

exp

(
−1

2

∫ ∞
−∞

dw

2π
K̃(ω)WT (ω)

)
(3.163)
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but with a modified window function

WT (ω) =

∣∣∣∣∫ T

0
dtJ(t)eiωt

∣∣∣∣2 , (3.164)

where J(t) is a modulating function that expresses the effect of the spin
echo pulse sequence. For example, if we flip the spin at time T/2, then
J(t) is +1 in the interval [0, T/2] and -1 in the interval [T/2, T ]; therefore

WT (w) =
1

ω2

∣∣∣1− 2eiωT/2 + eiωT
∣∣∣2

=
1

ω2

∣∣∣∣∣1− eiωT/21 + eiωT/2
(
1− eiωT

)∣∣∣∣∣
2

= tan2(ωT/4) · 4

ω2
sin2(ωt/2). (3.165)

In effect, the spin echo modifies K̃(ω) by the multiplicative factor
tan2(ωT/4), which suppresses the low frequency noise.

The suppression can be improved further by using more pulses. In prac-
tice, pulses have bounded strength and nonzero duration, which places
limitations on the effectiveness of this strategy.

3.6.3 Qubits as noise spectrometers

Now let’s consider a different model of classical noise, in which the fluc-
tuating term does not commute with the unperturbed Hamiltonian:

H = −1

2
ω01σ3 + f(t)σ1. (3.166)

In this model the fluctuating field can induce transitions among the energy
eigenstates, at a rate that can be computed using lowest-order interaction-
picture perturbation theory if the noise is weak. The probability that a
qubit prepared in the state |1〉 at time 0 is observed in the state |0〉 at
time T , averaged over the fluctuating classical field, is

Prob(1→ 0) =

[ ∣∣∣∣−i∫ T

0
dt f(t)e−iω01t〈0|σ1|1〉

∣∣∣∣2
]

=

∫ T

0
dt

∫ T

0
dt′ e−iω01(t−t′) [f(t)f(t′)

]
=

∫ ∞
−∞

dω

2π
K̃(ω)WT (ω − ω01) . (3.167)

This expression is similar to the formula eq.(3.160) for the off-diagonal
term in the density operator obtained in the dephasing model, except that
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now the center of the window function has been shifted to the frequency
ω01 of the transition.

As before, if we consider the observation time T to be large compared
to the autocorrelation time τc of the noise, then the support of the window
function is narrow, and K̃(ω) is approximately constant in the window.
Thus, after a suitable coarse-graining of the time evolution, we may iden-
tify a rate for the decay of the qubit

Γ↓ = K̃(ω = ω01). (3.168)

Similarly, for the transition from ground state to excited state, we find

Γ↑ = K̃(ω = −ω01). (3.169)

Thus negative frequency noise transfers energy from the noise reservoir
to the qubit, exciting the qubit, while positive frequency noise transfers
energy from qubit to the noise reservoir, returning the excited qubit to
the ground state. (Dephasing of a qubit, in contrast, involves a negligible
exchange of energy and therefore is controlled by low frequency noise.) We
conclude that an experimentalist capable of varying the energy splitting
ω01 and measuring the qubit’s transition rate can determine how the noise
power depends on the frequency.

For the case we have considered in which the noise source is classical,
f(t) and f(t′) are real commuting variables; therefore K(t) is an even
function of t and correspondingly K̃(ω) is an even function of ω. Classical
noise is spectrally symmetric, and the rates for excitation and decay are
equal.

On the other hand, noise driven by a quantized thermal “bath” can
be spectrally asymmetric. When the qubit comes to thermal equilibrium
with the bath, up and down transitions occur at equal rates. If p0 denotes
the probability that the qubit is in the ground state |0〉 and p1 denotes the
probability that the qubit is in the excited state |1〉, then in equilibrium

p0Γ↑ = p1Γ↓ ⇒
K̃(−ω01)

K̃(ω01)
=
p1

p0
= e−βω01 ; (3.170)

the ratio of noise strengths at positive and negative frequencies is given
(for a thermal bath) by a Boltzmann factor; this property of the noise is
called the Kubo-Martin-Schwinger (KMS) condition. The noise becomes
classical in the high-temperature limit βω01 � 1, and is in the deeply
quantum regime for βω01 � 1.

3.6.4 Spin-boson model at nonzero temperature

To turn our model of classical dephasing noise into a quantum model,
we replace the stochastic classical field f(t) by an operator acting on a
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quantized bath. The noise will still be Gaussian if the bath is a system of
harmonic oscillators, uncoupled to one another and each coupled linearly
to the dephasing qubit. The Hamiltonian for the system A and bath B is

HA +HB +HAB = −1

2
ω01σ3 +

∑
k

ωka
†
kak −

1

2
σ3

(∑
k

gkak + g∗ka
†
k

)
,

(3.171)
which is called the spin-boson model, as it describes a single spin-1

2 par-
ticle coupled to many bosonic variables. This is a model of dephasing
because the coupling of the spin to the bath is diagonal in the spin’s
energy eigenstate basis. (Otherwise the physics of the model would be
harder to analyze.) Despite its simplicity, the spin-boson model provides
a reasonably realistic description of dephasing for a qubit weakly coupled
to many degrees of freedom in the environment.

If there are many oscillators, the sum over k can be approximated by
a frequency integral: ∑

k

|gk|2 ≈
∫ ∞

0
dωJ(ω), (3.172)

where J(ω) is said to be the spectral function of the oscillator bath. Let’s
assume that the bath is in thermal equilibrium at temperature β−1. In
principle, the coupling to the system could tweak the equilibrium distri-
bution of the bath, but we assume that this effect is negligible, because
the bath is much bigger than the system. The fluctuations of the bath
are Gaussian, and the average over the ensemble of classical functions in
our previous analysis can be replaced by the thermal expectation value:

[f(t)f(0)] 7→ 〈f(t)f(0)〉β ≡ tr
(
e−βHBf(t)f(0)

)
, (3.173)

where now f(t) denotes the operator

f(t) = eitHBf(0)e−itHB =
∑
k

(
gkake

−iωkt + g∗ka
†
ke
iωkt
)
. (3.174)

We see that

Kβ(t) ≡ 〈f(t)f(0)〉β =
∑
k

|gk|2 〈e−iωktaka
†
k + eiωkta†kak〉β. (3.175)

From the Planck distribution, we find

〈a†kak〉β =
1

eβωk − 1
=

1

2
coth(βωk/2)− 1

2
,

〈aka†k〉β = 〈a†kak + 1〉β =
1

2
coth(βωk/2) +

1

2
, (3.176)
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and by Fourier transforming we obtain the spectral density of the noise

K̃β(ω) ≡
∫ ∞
−∞

dt eiωtKβ(t)

=
∑
k

|gk|2
(

2πδ(ω − ωk)〈aka†k〉β + 2πδ(ω + ωk)〈a†kak〉β
)
,

(3.177)

which may be written as

K̃β(ω) = πJ(ω) (coth(βω/2) + 1) , ω > 0,

K̃β(ω) = πJ(ω) (coth(βω/2)− 1) , ω < 0. (3.178)

Thus, as we anticipated, the noise power spectrum exhibits the spec-
tral asymmetry required by the KMS condition — the spectral density
K̃β(−ω) of the noise at negative frequency is supressed relative to the

spectral density K̃β(ω) at positive frequency by the Boltzmann factor
e−βω.

Since the window function WT (ω) is an even function of ω, only the even
part of K̃β(ω) contributes to the attenuation of |0〉〈1|; the attenuation
factor

exp

(
−1

2

∫ ∞
−∞

dω

2π
K̃β(ω)WT (ω)

)
, (3.179)

therefore becomes

exp

(
−
∫ ∞

0
dωJ(ω)

2 sin2(ωT/2)

ω2
coth(βω/2)

)
. (3.180)

A dephasing rate can be identified if the spectral function J(ω) behaves
suitably at low frequency; the attenuation factor is e−Γ2T in the limit
T →∞ where

Γ2 = lim
ω→0

K̃β(ω) = lim
ω→0

2πJ(ω)/(βω), (3.181)

assuming that this limit exists. The noise is said to be Ohmic if J(ω) ≈
Aω is linear in ω at low frequency, and in that case the dephasing rate
becomes Γ2 = 2πAβ−1 in the limit of long time T .

3.7 Summary

POVM. If we restrict our attention to a subspace of a larger Hilbert
space, then an orthogonal (Von Neumann) measurement performed on the
larger space cannot in general be described as an orthogonal measurement
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on the subspace. Rather, it is a generalized measurement or POVM —
the outcome a occurs with a probability

Prob(a) = tr (Eaρ) , (3.182)

where ρ is the density matrix of the subsystem, each Ea is a positive
hermitian operator, and the Ea’s satisfy∑

a

Ea = I . (3.183)

A POVM in HA can be realized as a unitary transformation on the tensor
product HA ⊗HB, followed by an orthogonal measurement in HB.

Quantum channel. Unitary evolution on HA⊗HB will not in general
appear to be unitary if we restrict our attention to HA alone. Rather,
evolution in HA will be described by a quantum channel, (which can be
inverted by another channel only if unitary). A general channel E has an
operator-sum representation:

E : ρ→ E(ρ) =
∑
a

MaρM
†
a , (3.184)

where ∑
a

M †
aMa = I. (3.185)

In fact, any reasonable (linear, trace preserving, and completely positive)
mapping of density operators to density operators has such an operator-
sum representation.

Decoherence. Decoherence — the decay of quantum information due
to the interaction of a system with its environment — can be described
by a quantum channel. If the environment frequently “scatters” off the
system, and the state of the environment is not monitored, then off-
diagonal terms in the density operator of the system decay rapidly in a
preferred basis (typically a spatially localized basis selected by the nature
of the coupling of the system to the environment). The time scale for
decoherence is set by the scattering rate, which may be much larger than
the damping rate for the system.

Master Equation. When the relevant dynamical time scale of an
open quantum system is long compared to the time for the environment
to “forget” quantum information, the evolution of the system is effectively
local in time (the Markovian approximation). Much as general unitary
evolution is generated by a Hamiltonian, a general Markovian superoper-
ator is generated by a Liouvillian L as described by the master equation:

ρ̇ ≡ L(ρ) = −i[H,ρ] +
∑
a

(
LaρL

†
a −

1

2
L†aLaρ−

1

2
ρL†aLa

)
. (3.186)
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Here each Lindblad operator (or quantum jump operator) La describes a
“quantum jump” that could in principle be detected if we monitored the
environment faithfully. By solving the master equation, we can compute
the decoherence rate of an open system.

Non-Markovian noise. Non-Markovian noise can be characterized
by its power spectrum, and the effects of the noise on dephasing over a
long time period are determined by the behavior of the power spectrum
at low frequency. Quantum noise in thermal equilibrium at temperature
β−1 has a spectral asymmetry — the noise at negative frequency (−ω) is
suppressed compared to the noise at positive frequency ω by a Boltzmann
factor e−βω (the KMS condition).

Further important ideas are developed in the Exercises.

3.8 Exercises

3.1 Which state did Alice make?

Consider a game in which Alice prepares one of two possible states:
either ρ1 with a priori probability p1, or ρ2 with a priori probability
p2 = 1− p1. Bob is to perform a measurement and on the basis of
the outcome to guess which state Alice prepared. If Bob’s guess is
right, he wins; if he guesses wrong, Alice wins.

In this exercise you will find Bob’s best strategy, and determine his
optimal probability of error.

Let’s suppose (for now) that Bob performs a POVM with two pos-
sible outcomes, corresponding to the two nonnegative Hermitian
operators E1 and E2 = I −E1. If Bob’s outcome is E1, he guesses
that Alice’s state was ρ1, and if it is E2, he guesses ρ2. Then the
probability that Bob guesses wrong is

perror = p1 tr (ρ1E2) + p2 tr (ρ2E1) . (3.187)

a) Show that

perror = p1 +
∑
i

λi〈i|E1|i〉 , (3.188)

where {|i〉} denotes the orthonormal basis of eigenstates of the
Hermitian operator p2ρ2 − p1ρ1, and the λi’s are the corre-
sponding eigenvalues.

b) Bob’s best strategy is to perform the two-outcome POVM that
minimizes this error probability. Find the nonnegative opera-
tor E1 that minimizes perror, and show that error probability
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when Bob performs this optimal two-outcome POVM is

(perror)optimal = p1 +
∑
neg

λi . (3.189)

where
∑

neg denotes the sum over all of the negative eigenvalues
of p2ρ2 − p1ρ1.

c) It is convenient to express this optimal error probability in terms
of the L1 norm of the operator p2ρ2 − p1ρ1,

‖p2ρ2 − p1ρ1‖1 = tr |p2ρ2 − p1ρ1| =
∑
pos

λi −
∑
neg

λi , (3.190)

the difference between the sum of positive eigenvalues and
the sum of negative eigenvalues. Use the property tr (p2ρ2 −
p1ρ1) = p2 − p1 to show that

(perror)optimal =
1

2
− 1

2
‖p2ρ2 − p1ρ1‖1 . (3.191)

Check whether the answer makes sense in the case where ρ1 =
ρ2 and in the case where ρ1 and ρ2 have support on orthogonal
subspaces.

d) Now suppose that Alice decides at random (with p1 = p2 = 1/2)
to prepare one of two pure states |ψ1〉, |ψ2〉 of a single qubit,
with

|〈ψ1|ψ2〉| = sin(2α) , 0 ≤ α ≤ π/4 . (3.192)

With a suitable choice of basis, the two states can be expressed
as

|ψ1〉 =

(
cosα
sinα

)
, |ψ2〉 =

(
sinα
cosα

)
. (3.193)

Find Bob’s optimal two-outcome measurement, and compute
the optimal error probability.

e) Bob wonders whether he can find a better strategy if his POVM
{Ei} has more than two possible outcomes. Let p(a|i) de-
note the probability that state a was prepared, given that the
measurement outcome was i; it can be computed using the
relations

pip(1|i) = p1p(i|1) = p1 tr ρ1Ei ,

pip(2|i) = p2p(i|2) = p2 tr ρ2Ei ; (3.194)

here p(i|a) denotes the probability that Bob finds measurement
outcome i if Alice prepared the state ρa, and pi denotes the
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probability that Bob finds measurement outcome i, averaged
over Alice’s choice of state. For each outcome i, Bob will make
his decision according to which of the two quantities

p(1|i) , p(2|i) (3.195)

is the larger; the probability that he makes a mistake is the
smaller of these two quantities. This probability of error, given
that Bob obtains outcome i, can be written as

perror(i) = min (p(1|i), p(2|i)) =
1

2
− 1

2
|p(2|i)− p(1|i)| .

(3.196)
Show that the probability of error, averaged over the measure-
ment outcomes, is

perror =
∑
i

pi perror(i) =
1

2
− 1

2

∑
i

|tr (p2ρ2 − p1ρ1)Ei| .

(3.197)

f) By expanding in terms of the basis of eigenstates of p2ρ2−p1ρ1,
show that

perror ≥
1

2
− 1

2
‖p2ρ2 − p1ρ1‖1 . (3.198)

(Hint: Use the completeness property
∑

iEi = I.) Since we
have already shown that this bound can be saturated with a
two-outcome POVM, the POVM with many outcomes is no
better.

3.2 Eavesdropping and disturbance

Alice wants to send a message to Bob. Alice is equipped to prepare
either one of the two states |u〉 or |v〉. These two states, in a suitable
basis, can be expressed as

|u〉 =

(
cosα
sinα

)
, |v〉 =

(
sinα
cosα

)
, (3.199)

where 0 < α < π/4. Suppose that Alice decides at random to send
either |u〉 or |v〉 to Bob, and Bob is to make a measurement to
determine what she sent. Since the two states are not orthogonal,
Bob cannot distinguish the states perfectly.

a) Bob realizes that he can’t expect to be able to identify Alice’s
qubit every time, so he settles for a procedure that is successful
only some of the time. He performs a POVM with three pos-
sible outcomes: ¬u, ¬v, or DON’T KNOW. If he obtains the
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result ¬u, he is certain that |v〉 was sent, and if he obtains ¬v,
he is certain that |u〉 was sent. If the result is DON’T KNOW,
then his measurement is inconclusive. This POVM is defined
by the operators

E¬u = A(I − |u〉〈u|) , E¬v = A(I − |v〉〈v|) ,
EDK = (1− 2A)I +A (|u〉〈u|+ |v〉〈v|) , (3.200)

where A is a positive real number. How should Bob choose
A to minimize the probability of the outcome DK, and what
is this minimal DK probability (assuming that Alice chooses
from {|u〉, |v〉} equiprobably)? Hint: If A is too large, EDK

will have negative eigenvalues, and Eq.(3.200) will not be a
POVM.

b) Eve also wants to know what Alice is sending to Bob. Hoping
that Alice and Bob won’t notice, she intercepts each qubit
that Alice sends, by performing an orthogonal measurement
that projects onto the basis

{(
1
0

)
,
(

0
1

)}
. If she obtains the

outcome
(

1
0

)
, she sends the state |u〉 on to Bob, and if she

obtains the outcome
(

0
1

)
, she sends |v〉 on to Bob. Therefore

each time Bob’s POVM has a conclusive outcome, Eve knows
with certainty what that outcome is. But Eve’s tampering
causes detectable errors; sometimes Bob obtains a “conclusive”
outcome that actually differs from what Alice sent. What is the
probability of such an error, when Bob’s outcome is conclusive?

3.3 Minimal disturbance

Consider a game in which Alice decides at random (equiprobably)
whether to prepare one of two possible pure states of a single qubit,
either

|ψ〉 =

(
cosα
sinα

)
, or |ψ̃〉 =

(
sinα
cosα

)
, (3.201)

and sends the state to Bob. By performing an orthogonal measure-
ment in the basis {|0〉, |1〉}, Bob can identify the state with minimal
error probability

(perror)optimal = sin2 α =
1

2
(1− sin θ) , (3.202)

where we have defined θ by

〈ψ|ψ̃〉 ≡ cos θ = sin(2α) . (3.203)



3.8 Exercises 53

But now let’s suppose that Eve wants to eavesdrop on the state as it
travels from Alice to Bob. Like Bob, she wishes to extract optimal
information that distinguishes |ψ〉 from |ψ̃〉, and she also wants to
minimize the disturbance introduced by her eavesdropping, so that
Alice and Bob are not likely to notice that anything is amiss.

Eve realizes that the optimal POVM can be achieved by measure-
ment operators

M0 = |φ0〉〈0| , M1 = |φ1〉〈1| , (3.204)

where the vectors |φ0〉, and |φ1〉 are arbitrary. If Eve performs this
measurement, then Bob receives the state

ρ′ = cos2 α|φ0〉〈φ0|+ sin2 α|φ1〉〈φ1| , (3.205)

if Alice sent |ψ〉, and the state

ρ̃′ = sin2 α|φ0〉〈φ0|+ cos2 α|φ1〉〈φ1| , (3.206)

if Alice sent |ψ̃〉.
Eve wants the average fidelity of the state received by Bob to be as
large as possible. The quantity that she wants to minimize, which
we will call the “disturbance” D, measures how close this average
fidelity is to one:

D = 1− 1

2
(F + F̃ ) , (3.207)

where

F = 〈ψ|ρ′|ψ〉 , F̃ = 〈ψ̃|ρ̃′|ψ̃〉 . (3.208)

The purpose of this exercise is to examine how effectively Eve can re-
duce the disturbance by choosing her measurement operators prop-
erly.

a) Show that F + F̃ can be expressed as

F + F̃ = 〈φ0|A|φ0〉+ 〈φ1|B|φ1〉 , (3.209)

where

A =

(
1− 2 cos2 α sin2 α cosα sinα

cosα sinα 2 cos2 α sin2 α

)
,

B =

(
2 cos2 α sin2 α cosα sinα

cosα sinα 1− 2 cos2 α sin2 α

)
. (3.210)
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b) Show that if |φ0〉 and |φ1〉 are chosen optimally, the minimal
disturbance that can be attained is

Dmin(cos2 θ) =
1

2
(1−

√
1− cos2 θ + cos4 θ) . (3.211)

[Hint: We can choose |φ0〉 and |φ1〉 to maximize the two terms
in eq. (3.209) independently. The maximal value is the maxi-
mal eigenvalue of A, which since the eigenvalues sum to 1, can
be expressed as λmax = 1

2

(
1 +
√

1− 4 · det A
)
.] Of course,

Eve could reduce the disturbance further were she willing to
settle for a less than optimal probability of guessing Alice’s
state correctly.

c) Sketch a plot of the function Dmin(cos2 θ). Interpret its value for
cos θ = 1 and cos θ = 0. For what value of θ is Dmin largest?
Find Dmin and (perror)optimal for this value of θ.

3.4 The price of quantum state encryption

Alice and Bob are working on a top secret project. I can’t tell you
exactly what the project is, but I will reveal that Alice and Bob
are connected by a perfect quantum channel, and that Alice uses
the channel to send quantum states to Bob. Alice and Bob are
worried that an eavesdropper (Eve) might intercept some of Alice’s
transmissions. By measuring the intercepted quantum state, Eve
could learn something about what Alice is sending, and perhaps
make an inference about the nature of the project.

To protect against eavesdropping, Alice and Bob decide to encrypt
the quantum states that Alice sends. They share a secret key, a
string of random bits about which the eavesdropper knows nothing.
By consuming 2n bits of secret key, Alice can encrypt, and Bob can
decrypt, an arbitrary n-qubit state ρ. For every possible state ρ,
the encrypted state looks exactly the same to Eve, so she cannot
find out anything about ρ.

Here is how the encryption procedure works: We may express the
2n bit string x as x = x0x1x2 · · ·xn−1, where xi ∈ {0, 1, 2, 3}, and
denote a tensor product of n Pauli operators as

σ(x) = σx0 ⊗ σx2 ⊗ · · · ⊗ σxn−1 (3.212)

(where σ0 = I). Note that σ(x)2 = I⊗n, the identity operator
acting on n qubits. To encrypt, Alice consults her random string
to determine x (which is chosen uniformly at random), and applies
σ(x) to the state, obtaining σ(x)ρσ(x). To decrypt, Bob, consults
the same string and applies σ(x) to recover ρ.
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a) Since Eve does not know the secret key, to her the encrypted
state is indistinguishable from

E(ρ) =
1

22n

∑
x

σ(x)ρσ(x) . (3.213)

Show that, for any n-qubit state ρ

E(ρ) =
1

2n
I⊗n . (3.214)

Since E(ρ) is independent of ρ, no information about ρ is ac-
cessible to Eve.

b) Alice wonders if it is possible to encrypt the state using a shorter
key. Alice and Bob could use their shared randomness to sam-
ple an arbitrary probability distribution. That is, they could
agree on a set of N unitary matrices {Ua, a = 1, 2, 3, . . . , N},
and Alice could encrypt by applying Ua with probability pa.
Then Bob could decrypt by applying U−1

a . To Eve, the en-
crypted state would then appear to be

E ′(ρ) =
∑
a

paUaρU
−1
a . (3.215)

Show that, if E ′(ρ) = I⊗n, then pa ≤ 2−2n for each a.

Hint: Note that E has an operator sum representation with
Kraus operators {σ(x)/2n} and that E ′ has an operator sum
representation with Kraus operators {√pa Ua}. Further-
more E = E ′. Therefore, there exists an M × M unitary
matrix Vax (where M = max(N, 22n)) such that

√
p
a
Ua =∑

x Vaxσ(x)/2n. Now express patr
(
UaU

†
a

)
in terms of V .

Remark: The result shows that encryption requires N ≥ 22n, and
that at least 2n bits of key are required to specify Ua. Thus the
encryption scheme in which σ(x) is applied is the most efficient
possible scheme. (For encryption to be effective, it is enough for
E(ρ) to be independent of ρ; it is not necessary that E(ρ) = I⊗n/2n.
But the same result applies under the weaker assumption that E(ρ)
is independent of ρ.)

3.5 Unital maps and majorization

Recall that the action of a trace-preserving completely positive
(TPCP) map E can be expressed as

E(ρ) =
∑
a

MaρM
†
a , (3.216)
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where ∑
a

M †
aMa = I . (3.217)

A TPCP map is said to be unital if E(I) = I, or equivalently if∑
a

MaM
†
a = I . (3.218)

IfA is a nonnegative Hermitian operator with unit trace (trA = 1),
let λ(A) denote the vector of eigenvalues of A, which can be re-
garded as a probability vector. If A and B are nonnegative Hermi-
tian operators with unit trace, we say that A ≺ B (“A is majorized
by B”) if λ(A) ≺ λ(B). (Recall that for two probability vectors p
and q, we say that p ≺ q if there is a doubly stochastic matrix D
such that p = Dq.)

Show that if ρ is a density operator and E is a unital map, then

E(ρ) ≺ ρ . (3.219)

Hint: Express ρ = U∆U † where ∆ is diagonal and U is unitary,
and express ρ′ ≡ E(ρ) = V∆′V †, where ∆′ is diagonal and V
is unitary. Then try to show that the diagonal entries of ∆′ can
be expressed as a doubly stochastic matrix acting on the diagonal
entries of ∆.

Remark: A unital map is the natural quantum generalization of
a doubly stochastic map (a doubly stochastic map can be regarded
as the special case of a unital map that preserves the basis in which
ρ is diagonal). The result of the exercise shows that a unital map
takes an input density operator to an output density operator that
is no less random than the input.

3.6 What transformations are possible for bipartite pure states?

Alice and Bob share a bipartite pure state |Ψ〉. Using a 2-LOCC
protocol, they wish to transform it to another bipartite pure state
|Φ〉. Furthermore, the protocol must be deterministic — the state
|Φ〉 is obtained with probability one irrespective of the outcomes of
the measurements that Alice and Bob perform.

Suppose that these initial and final states have Schmidt decompo-
sitions

|Ψ〉 =
∑
i

√
(pΨ)i |αi〉 ⊗ |βi〉 , |Φ〉 =

∑
i

√
(pΦ)i |α′i〉 ⊗ |β′i〉 .

(3.220)
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Show that if the deterministic transformation |Ψ〉 7→ |Φ〉 is possible,
then pΨ ≺ pΦ.

Hints: Using the Lo-Popescu Theorem from Exercise 2.9, we can
reduce the 2-LOCC to an equivalent 1-LOCC. That is, if the de-
terministic transformation is possible, then there is a generalized
measurement that can be applied by Alice, and an operation de-
pending on Alice’s measurement outcome that can be applied by
Bob, such that for each possible measurement outcome Alice’s mea-
surement followed by Bob’s operation maps |Ψ〉 to |Φ〉. Recall that
a generalized measurement is defined by a set of operators {Ma}
such that

∑
aM

†
aMa = I, and that the action of the measurement

on a pure state |ψ〉 if outcome a occurs is

|ψ〉 7→ Ma|ψ〉√
〈ψ|M †

aMa|ψ〉
. (3.221)

Think about how the 1-LOCC protocol transforms Alice’s density
operator. You might want to use the polar decomposition: a matrix

A can be expressed as
√
AA† U , where U is unitary.

Remark: The converse is also true. Thus majorization provides the
necessary and sufficient condition for the deterministic transforma-
tion of one bipartite pure state to another (Nielsen’s Theorem). In
this respect, majorization defines a partial order on bipartite pure
states such that we may say that |Ψ〉 is no less entangled than |Φ〉
if pΨ ≺ pΦ.

3.7 Fidelity and overlap

The overlap of two probability distributions {pi} and {p̃i} is defined
as

Overlap({pi}, {p̃i}) ≡
∑
i

√
pi · p̃i . (3.222)

Suppose that we try to distinguish the two states ρ and ρ̃ by per-
forming the POVM {Ei}. Then the two corresponding probability
distributions have the overlap

Overlap(ρ, ρ̃; {Ei}) ≡
∑
i

√
tr ρEi ·

√
tr ρ̃Ei . (3.223)

It turns out that the minimal overlap that can be achieved by any

POVM is related to the fidelity F (ρ, ρ̃) =
∥∥∥ρ̃ 1

2ρ
1
2

∥∥∥2

1
:

min{Ei} [Overlap(ρ, ρ̃; {Ei})] =
√
F (ρ, ρ̃) . (3.224)
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In this exercise, you will show that the square root of the fidelity
is a lower bound on the overlap, but not that the bound can be
saturated.

b) The space of linear operators acting on a Hilbert space is itself a
Hilbert space, where the inner product (A,B) of two operators
A and B is

(A,B) ≡ tr
(
A†B

)
. (3.225)

For this inner product, the Schwarz inequality becomes

|tr A†B| ≤
(

tr A†A
)1/2 (

tr B†B
)1/2

, (3.226)

Choosing A = ρ
1
2E

1
2
i and B = Uρ̃

1
2E

1
2
i (for an arbitrary uni-

tary U), use this form of the Schwarz inequality to show that

Overlap(ρ, ρ̃; {Ei}) ≥ |tr ρ
1
2Uρ̃

1
2 | . (3.227)

c) Now use the polar decomposition

A = V
√
A†A (3.228)

(where V is unitary) to write

ρ̃
1
2ρ

1
2 = V

√
ρ

1
2 ρ̃ρ

1
2 , (3.229)

and by choosing the unitary U in eq. (3.227) to be U = V −1,
show that

Overlap(ρ, ρ̃; {Ei}) ≥
√
F (ρ, ρ̃) . (3.230)

d) We can obtain an explicit formula for the fidelity in the case of
two states of a single qubit. Using the Bloch parametrization

ρ(~P ) =
1

2

(
I + ~σ · ~P

)
, (3.231)

show that the fidelity of two single-qubit states with polariza-
tion vectors ~P and ~Q is

F (~P , ~Q) =
1

2

(
1 + ~P · ~Q+

√
(1− ~P 2)(1− ~Q2)

)
. (3.232)

Hint: First note that the eigenvalues of a 2× 2 matrix can be
expressed in terms of the trace and determinant of the matrix.

Then evaluate the determinant and trace of
(
ρ

1
2 ρ̃ρ

1
2

)
, and

calculate the fidelity using the corresponding expression for
the eigenvalues.
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3.8 Semicausal and semilocal maps in the Heisenberg picture

In the Schrödinger picture, a completely positive (CP) map E leaves
observables fixed and takes an input density operator to an output
density operator, E : ρin 7→ ρout = E(ρin). In the Heisenberg pic-
ture, the dual map E∗ leaves density operators fixed and takes an in-
put observable to an output observable, E∗ : ain 7→ aout = E∗(ain).
If E has the operator sum representation E(ρ) =

∑
µMaρM

†
a, then

its dual has operator sum representation

E∗(a) =
∑
a

M †
aaMa . (3.233)

a) If E is a TPCP map, show that its dual E∗ can be represented
as

E∗(a) = C〈0|U †AC (aA ⊗ IC)UAC |0〉C , (3.234)

where UAC is a unitary transformation on AC, aA is an ob-
servable on A, IC is the identity on C, and |0〉C is a fixed pure
state in HC . (You may use the corresponding property of the
TPCP map E .)

b) Consider a CP map E acting on a bipartite quantum system AB.
We way that E is semicausal if the map does not convey any
information from B to A. That is, suppose that Alice and Bob
share an initial state ρAB. Then if Bob performs an operation
on B before the map E acts, and Alice makes a measurement
on A after the map E acts, Alice’s measurement collects no
information about the operation that Bob performed. Show
that if E is semicausal, then there is an operation Ẽ on A such
that

E∗(aA ⊗ IB) = Ẽ∗(aA)⊗ IB . (3.235)

c) We say that E is semilocal if it can be performed by means of
local operations and one-way quantum communication from A
to B. That is, there is a message system C that can be passed
from Alice to Bob. We may assume that the initial state of
ABC is a product ρAB ⊗ ρC — the state of the message is
uncorrelated with the joint state held by Alice and Bob. To
apply E to ρAB, Alice applies an operation to AC, and sends
C to Bob. Then Bob applies an operation to BC, and discards
C. Show that if E is semilocal, then there are CP maps GAC
from A to AC and FBC from BC to B such that

E∗ = (G∗AC ⊗ IB) ◦ (IA ⊗F∗BC) ; (3.236)

here ◦ denotes composition of maps, with the map on the right
acting first.
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d) Using the Heisenberg-picture characterizations of semicausal and
semilocal maps found in (b) and (c), show that a semilocal map
is semicausal, and express Ẽ in terms of F and G.

Remark. The result (d) is intuitively obvious — communication
from Alice to Bob cannot convey a signal from Bob to Alice. What
is less obvious is that the converse is also true: every semicausal
map is semilocal.

3.9 Damped harmonic oscillator at zero temperature

Let’s suppose the oscillations of a quantum harmonic oscillator with
circular frequency ω are damped because the oscillator can emit
photons with energy ~ω. When a photon is emitted, the oscillator
makes a transition from the energy eigenstate with energy En = n~ω
to the energy eigenstate with enenrgy En−1 = (n − 1)~ω, and the
photon carries away the lost energy. The probability that a photon
is emitted in an infinitesimal time interval dt is Γdt; we say that Γ is
the emission rate. Therefore, the coupled evolution of the oscillator
and the electromagnetic field for time interval dt can be described
as:

|Ψ(0)〉 = |ψ〉 ⊗ |0〉 7→

|Ψ(dt)〉 =
√

Γdt a|ψ〉 ⊗ |1〉+

(
I − 1

2
Γdt a†a

)
|ψ〉 ⊗ |0〉.

(3.237)

Here |ψ〉 is the initial normalized state vector of the oscillator and
{|0〉, |1〉} are orthonormal states of the electromagnetic field; |0〉
denotes the state in which no photon has been emitted and |1〉
denotes the state containing one photon. The operator a reduces
the excitation level of the oscillator by one unit, and the a†a factor
in the second term is needed to ensure that the evolution is unitary.

a) Check unitarity by verifying that 〈Ψ(dt)|Ψ(dt)〉 = 1, to linear
order in the small quantity dt.

Because the states {|0〉, |1〉} of the electromagnetic field are orthog-
onal, the quantum state of the oscillator may decohere. Summing
over these basis states, we see that the initial pure state |ψ〉〈ψ| of
the oscillator evolves in time dt as

|ψ〉〈ψ| 7→ 〈0|Ψ(dt)〉〈Ψ(dt)|0〉+ 〈1|Ψ(dt)〉〈Ψ(dt)|1〉

= Γdt a|ψ〉〈ψ|a† +

(
I − 1

2
Γdt a†a

)
|ψ〉〈ψ|

(
I − 1

2
Γdt a†a

)
;
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More generally, the initial (not necessarily pure) density operator ρ
of the oscillator evolves as

ρ 7→ Γdt aρa† +

(
I − 1

2
Γdt a†a

)
ρ

(
I − 1

2
Γdt a†a

)
. (3.238)

Now suppose that the initial state of the oscillator is a coherent
state

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉, (3.239)

where α is a complex number. For this problem, we will ignore the
usual dynamics of the oscillator that causes α to rotate uniformly in
time: α 7→ αe−iωt; equivalently, we will assume that the dynamics
is described in a “rotating frame” such that the rotation of α is
transformed away. We will only be interested in how the states of
the oscillator are affected by the damping described by eq.(3.238).

b) Show that, to linear order in dt,(
I − 1

2
Γdt a†a

)
|α〉 ≈ e−Γdt|α|2/2|α e−Γdt/2〉. (3.240)

Note that there are two things to check in eq.(3.240): that the
value of α decays with time, and that the normalization of the
state decays with time.

c) Verify that, also to linear order in dt,

Γdt a|α〉〈α|a† ≈ Γdt|α|2 |α e−Γdt/2〉〈α e−Γdt/2|, (3.241)

and thus show that, to linear order in dt, |α〉〈α| evolves as

|α〉〈α| 7→ |α e−Γdt/2〉〈α e−Γdt/2|. (3.242)

By considering many consecutive small time increments, argue
that, in a finite time t, the initial coherent state evolves as

|α〉 7→ |α e−Γt/2〉. (3.243)

Thus, the state remains a (pure) coherent state at all times,
with the value of α decaying exponentially with time. Since
the energy stored in the oscillator is proportional to α2, which
decays like e−Γt, we say that Γ is the damping rate of the
oscillator.
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Now consider what happens if the initial state of the oscillator is a
superposition of two coherent states:

|ψ〉 = Nα,β (|α〉+ |β〉) . (3.244)

Here Nα,β is a real nonnegative normalization constant (note that,
though the states |α〉 and β〉 are both normalized, they are not
orthogonal).

d) Evaluate 〈β|α〉, and determine Nα,β.

For example we might choose α = ξ0/
√

2 and β = −ξ0/
√

2, so
that the two superposed coherent states are minimum uncertainty
wavepackets (with width ∆ξ = 1/

√
2) centered at dimensionless

positions ±ξ0. If |α − β| � 1, then the two wavepackets are well
separated compared to their width, and we might say that oscilla-
tor state |ψ〉 is “in two places at once.” How quickly will such a
superposition of two separated wavepackets decohere?

The initial density operator of the oscillator is

ρ = N2
α,β

(
|α〉〈α|+ |α〉〈β|+ |β〉〈α|+ |β〉〈β|

)
. (3.245)

We already know from part (c) how the “diagonal” terms |α〉〈α| and
|β〉〈β| evolve, but what about the “off-diagonal” terms |α〉〈β| and
|β〉〈α|?

e) Using arguments similar to those used in parts (b) and (c), show
that in time t, the operator |α〉〈β| evolves as

|α〉〈β| 7→ eiφ(α,β)e−Γt|α−β|2/2|αe−Γt/2〉〈βe−Γt/2|, (3.246)

and find the phase factor eiφ(α,β). Thus the off-diagonal terms
decay exponentially with time, at a rate

Γdecohere =
1

2
Γ|α− β|2 (3.247)

proportional to the distance squared |α− β|2.

f) Consider an oscillator with mass m = 1 g, circular frequency
ω = 1 s−1 and (very good) quality factor Q ≡ ω/Γ = 109. Thus
the damping time is very long: over 30 years. A superposition
of minimum uncertainty wavepackets is prepared, centered at
positions x = ±1 cm. Estimate the decoherence rate. (Wow!
For macroscopic objects, decoherence is really fast!)
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3.10 One-qubit decoherence

The matrices I,σ1,σ2,σ3, where σ1,2,3 are the Pauli matrices and
bfI is the identity matrix, are a basis for the four-dimensional space
of 2× 2 matrices. Let us denote I as σ0.

a) Let E be a quantum operation (a completely positive map) acting
on the density operator ρ of a single qubit. Show that we may
express E(ρ) as

E(ρ) =
3∑

µ,ν=0

Eµν σµρσν , (3.248)

where the Eµν ’s are complex numbers satisfying Eµν = E∗νµ.
Hint: The operation E has an operator-sum representation
with operation elements {Ma}. Each Ma can be expanded in
the basis {σµ, µ = 0, 1, 2, 3}.

b) Find four independent conditions that must be satisfied by the
Eµν ’s in order that the operation E be trace-preserving (a chan-
nel).

c) A Hermitian 2× 2 operator can be expressed as

ρ(P ) =
1

2

3∑
µ=0

Pµσµ , (3.249)

where P0, P1, P2, P3 are real numbers. Show that a linear map
that takes Hermitian operators to Hermitian operators acts as

E(ρ(P )) = ρ(P ′) , (3.250)

where P ′ = MP and M is a real matrix. What is the (real)
dimension of the space of such linear maps?

d) Suppose that tr ρ = 1 and that E is trace preserving, so that
P0 = P ′0 = 1. Show that

~P ′ = M ~P + ~v , (3.251)

where ~P and ~P ′ are real three-component polarization vec-
tors, M is a real matrix, and ~v is a real three-component vec-
tor. What is the (real) dimension of the space of such trace-
preserving maps?

e) Express ~v in terms of the E0k’s. Hint: Use the result of (b).
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f) On a Hilbert space of dimension d, the space of linear maps from
Hermitian operators to Hermitian operators has real dimension
d4. What is the dimension of the space of trace-preserving
maps? Hint: Count the number of independent conditions
that must be imposed to ensure that the map is trace preserv-
ing.

3.11 Orthogonal or not?

Consider a generalized measurement (POVM) on an d-dimensional
Hilbert space. There are d possible outcomes for the measure-
ment corresponding to the d nonnegative operators Ea, a =
0, 1, 2, . . . , d−1, where

∑d−1
a=0Ea = I. Suppose that each Ea is one-

dimensional (has one nonzero eigenvalue). Is this POVM necessarily
an orthogonal measurement? Explain your answer.

3.12 Heterodyne measurement of an oscillator

The coherent states {|α〉, α ∈ C} are an overcomplete basis for a
one-dimensional harmonic oscillator, satisfying

〈β|α〉 = exp

(
−1

2
|β|2 + β∗α− 1

2
|α|2

)
(3.252)

a) Show that ∫
d2α Eα = I , (3.253)

where

Eα =
1

π
|α〉〈α| . (3.254)

Hint: Evaluate matrix elements of both sides of the equation
between coherent states.

b) Since the Eα’s provide a partition of unity, they define a POVM
(an “ideal heterodyne measurement” of the oscillator). Sup-
pose that a coherent state |β〉 is prepared, and that an ideal
heterodyne measurement is performed, so that the coherent
state |α〉 is obtained with probability distribution P (α) d2α =
〈β|Eα|β〉 d2α. With what fidelity does the measurement out-
come |α〉 approximate the initial coherent state |β〉, averaged
over the possible outcomes?

3.13 Master equation for the depolarizing channel

a) Consider a depolarizing qubit that is subjected to “Pauli errors”
at a rate Γ̃, where σ1, σ2, and σ3 errors are all equally likely.
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The depolarization can be described by a master equation with

Lindblad operators
√

Γ̃/3 σ1,
√

Γ̃/3 σ2, and
√

Γ̃/3 σ3. Show

that this master equation has the form

ρ̇ = −i[H,ρ]− Γ

(
ρ− 1

2
I

)
. (3.255)

How is Γ related to Γ̃?

b) Up to an irrelevant term proportional to the identity, the most
general 2× 2 Hermitian matrix is

H =
ω

2
n · σ , (3.256)

where n is a unit vector. Use this form of H and the Bloch
parametrization

ρ =
1

2
(I + ~P · ~σ) , (3.257)

to show that the master equation eq. (3.255) can be rewritten
as

~̇P = ω(n× ~P )− Γ~P . (3.258)

Thus the polarization precesses uniformly with circular fre-
quency ω about the n-axis as it contracts with lifetime Γ−1.

c) Alice and Bob play a game in which Alice decides to “turn on”
one of the two Hamiltonians

H =
ω

2
σ3 , H ′ = 0 , (3.259)

and Bob is to guess which Hamiltonian Alice chose. Bob has
a supply of qubits, and he can observe whether the qubits
“precess” in order to distinguish H from H ′. However, his
qubits are also subject to depolarization at the rate Γ as in
eq. (3.255). Suppose that Bob prepares his qubits at time 0

with polarization ~P0 = (1, 0, 0); after time t elapses, (1) find

the polarization ~P (t) if the Hamiltonian is H and (2) find the

polarization ~P ′(t) if the Hamiltonian is H ′.

d) What is Bob’s optimal measurement for distinguishing the po-

larizations ~P (t) and ~P ′(t) (assuming that Alice is as likely to
choose H as H ′? What is his optimal probability of error
(pe)opt (t)?

e) The probability of error is smallest if Bob waits for a time tbest

before measuring. Find tbest as a function of Γ and ω. Does
your answer make sense in the limits Γ� ω and Γ� ω?


