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Toric code recovery

Last time we discussed the toric code. This is a CSS code, where the qubits are associated with the edges of an 
L X L square lattice on a 2D torus (i.e., with periodic boundary conditions). The Z-type generators of the code 
stabilizer are weight four, with support on the four edges making up an elementary square ("plaquette") of the 
lattice, and the X-type generators are weight four with support on the four edges that meet at a site. There are two 
encoded qubits, and the logical Pauli operators Z_1, Z_2 are weight L with support on a cycle winding around the 
torus in the vertical and horizontal direction respectively. The logical Pauli operators X_1, X_2 are weight L with 
support on a cycle of the dual lattice winding around the torus in the horizontal and veritcal direction respectively. 
The code has length n=2L^2, distance L, and k=2 encoded qubits.

The code is highly degenerate. A Z-type operator can be viewed as a 1-chain on the lattice, and it commutes with 
the stabilizer if the 1-chain is a cycle (has a trivial boundary). The operator lies in the stabilizer if the cycle is 
homologically trivial (is the boundary of a 2-chain); otherwise it is a nontrivial operation acting on the code space. 
Similarly, an X-type operator can be viewed as a 1-chain on the dual lattice;  it commutes with the stabilizer if the 1-
chain is a cycle, and is contained in the stabilizer if the cycle is homologically trivial.

Now consider recovery from Z-type errors (recovery from X-type errors can be described similarly, with lattice and 
dual lattice interchanged). Suppose errors occur on a chain E. 





As with the concatenated codes discussed last time, we find that the distance L of the toric code is too pessimistic an 
indicator of the code's performance. It is possible for L/2 errors to cause a recovery failure if the locations of the 
errors are strategically chosen, but such error patterns are highly atypical. For randomly distibuted errors, recovery 
succeeds with high probability even if the errors occur at a constant rate up to 2.7% (so that the total number of 
errors in the code block is O(L^2), far greater than the code distance). Numerical simulations show that recovery 
succeeds for errors occuring at an even higher rate, up to about 10.6%. 



Fault-tolerant error recovery

Up until now we have discussed protecting quantum information using quantum error-correcting codes, where we 
have assumed that the recovery procedure can be performed perfectly. Next we want to consider how to use 
quantum error-correcting codes to protect a quantum computer from noise. There are two key issues that we need 
to address:

1) Aside from just protecting quantum information, we will need to process it. So we must figure out how to perform 
nontrivial quantum gates without leaving the code space, and so without losing the protection afforded by the code.

2) We will need to do the error recovery and the information processing using the imperfect gates that are 
achievable in a realistic quantum computer.

We will discuss issue (2) first, and postpone issue (1) for later. Specifically, if we use a stabilizer code to protect 
quantum information, we will need to measure the stabilizer generators (check operators) of the code. In principle 
this can be done by executing a quantum circuit (including qubit measurements and preparations). But the gates 
and measurements themselves will be prone to error (including the "identity gate" -- even qubits that are not being 
processed may suffer "storage errors"). Will the error recovery work if the recovery procedure itself is noisy?

For now, let's not worry about processing the encoded information; we'll just try to use a QECC to operate a reliable 
quantum memory. Furthermore, for now, let's suppose that we have an ideal encoder that we can use once to store 
quantum information in the memory, and a decoder that can perform an idealized error-correction and decoding 
step once when we are ready to retrieve a quantum state from the memory. But in between we are to protect the 
information in the memory by repeatedly performing cycles of error recovery using noisy gates. If we store the 
information for all together T error correction cycles, with what fidelity will we be able to retrieve the quantum 
information from the memory at the end?

How should we describe the noise in the gates? Though we could consider more general noise models, let's use this 
simple model: each gate (or preparation or measurement) in a quantum circuit is either ideal with probability 1-
epsilon, or faulty with probability epsilon. If the gate is faulty, it is replaced by an arbitrary TPCP map. With this 
model we can hope to use successfully a QECC that corrects t errors. The rough idea is that if the fault rate epsilon 
is small, the number of errors occuring during a cycle of error correction will only rarely exceed the number that the 
code can protect against.

Let's try to be more precise. What properties should an error correction "gadget" have to protect a quantum state 
successfully. Two fundamental properties are needed, which I will call "Property 0" and "Property 1". Before 
explaining the properties, we introduce some terminology. 

We will say that a quantum circuit (possibly including state preparation steps and measurement steps) is "r-good" if 
the circuit contains no more than r faults.

We will say that the quantum state of a code block is "s-deviated" from the code space if the state can be obtained 
by acting on a codeword (a state in the code space) with an error whose weight is at most s. That is, the "error" can 
be expanded in terms of Pauli operators of weight up to s.









Now .. how can we build an error correction gadget that obeys the properties 0 and 1. To be concrete, consider 
the t=1 case -- a code that corrects one error. In particular, consider the property 1b: we are to ensure that, that 
if the incoming state is a codeword, then a single fault in the EC will cause only a single (hence correctable) error 
in the code block.

If we are not careful, this will not be true. A single faulty gate in the EC might have two effects.
-- an error in the code block.
-- a nontrivial and incorrect syndrome.
Then, guided by the incorrect syndrome, we will flip the wrong qubit in a misguided effort to correct the error; this 
will introduce a second error in the block, overwhelming the codes error-correction capability.

A general approach to avoid being misled by incorrect syndrome information is to measure the syndrome 
multiple times. For the t=1 case, it suffices to measure the complete error syndrome twice. 
-- if the syndrome is trivial (indicates no error) the first time, then we need not repeat the syndrome 
measurement, nor do we take any action to recover from error.
-- if the syndrome is nontrivial, we repeat the syndrome measurement. If we obtain the same error syndrome 
twice in a row, then we trust the syndrome and apply the indicated recovery step. But if we obtain a different 
syndrome when we measure a second time, then we do not trust the syndrome and we do not attempt to 
recover.

Let's check that this procedure really has the required properties, starting with property 1. 



First, suppose that the full EC (including the repetition of the syndrome measurement) is 0-good (no faults). Then 
if the incoming block is 0-deviated, the syndrome will be trivial, and if it is 1-deviated, the block will be projeced 
onto a state with a definite Pauli error that can be correctly inferred from the syndrome. The second syndrome 
measurement (also with no faults) is guarenteed to give the same result, and recovery succeeds.

Next suppose that the EC is 1-good, and that the incoming state is a codeword. Then if the first syndrome 
measurement has no faults, the trivial syndrome is measured correctly, and no action is taken to recover. If the 
first syndrome measurement has a fault, then the syndrome measurement is repeated and the second syndrome 
measurement has no fault. If the syndrome measurement procedure has the property that a single fault 
introduces only a single error in the block, then the second syndrome measurement will identify this error 
correctly, and it will be corrected successfully. 

Now let's check property 0, in the case where the incoming state is arbitrary. If the EC has no faults, we will 
obtain a valid syndrome, and we can correct the state to the codespace successfully. But what if the EC has one 
fault? Again, if the first syndrome measurement has a fault and yields a nontrivial syndrome, then the second one 
has no fault and yields a valid syndrome. Therefore we can correct to the codespace successfully. 

It may be that the first syndrome measurement has a fault, and yields a trivial syndrome that is incorrect. In that 
case the syndrome measurement will not be repeated. We need to be sure to design our syndrome measurement 
procedure so that in this case the actual state of the block is only 1-deviated.

But suppose the first syndrome measurement has no fault, and yields a (correct) nontrivial syndrome. Then the 
second syndrome measurement might have a fault. We need to be sure to design our syndrome measurement 
procedure so that, although a fault in the second syndrome measurement might cause both an error in the block 
and an invalid syndrome, that nevertheless after recovery the state of the block is only 1-deviated. 

====================================

Now, note that we assumed above, in the case where the incoming state is a codeword, that a single fault in the 
syndrome measurement results in just one error in the block. But how to we make sure this is true? If we are not 
careful, even gates in the EC correction that do not have faults might propagate errors from one qubit to another.







But, we are not done yet with designing a fault-tolerant procedure --- we need to worry about the preparation of the 
ancilla cat state. Z errors in the ancilla state can cause the syndrome to be incorrect, a problem we can address by 
repeating the syndrome measurement. More serious are X errors in the ancilla, because these can propagate to 
the code block. Therefore, when we encode the cat state, we don't want to allow a single fault during the encoding 
circuit to result in two X errors in the state.

A circuit that encodes the cat state is:



We now have a complete design for an EC gadget for the [[7,1,3]] code; it is a 5-step procedure with spread 1, 
satisfying properties 0 and 1. 

1) prepare ancilla
2) verify ancilla
3) measure syndrome
4) repeat if necessary
5) recover

=================================
Here is another design of a fault-tolerant EC gadget for the [[7,1,3]] code. This time, instead of encoding the 
ancilla using the repetition code, the ancilla is encoded using the same [[7,1,3]] code that corrects the data. 

This gadget uses a general property of CSS codes which we will derive in the next lecture: an encoded CNOT 
can be executed transversally. This means that the circuit for the encoded CNOT is



This procedure has the advantage that it is highly parallelized --- for both the X and Z syndrome, the interaction 
between data block and ancilla block occurs in a single time step. A further advantage is that repetition of of the 
syndrome measurement is not necessary. A single faulty CNOT gate might cause an X error in the data and an X 
error in the ancilla, or a Z error in the data and a Z error in the ancilla. But, the error occurs in the same "position" 
in both the data block and the ancilla block. For example, if a single fault introduces an error in the first qubit of the 
data block and the first qubit of the ancilla block, we can't obtain an incorrect syndrome that instructs us to flip 
another qubit in the data block at a position other than the first position. Rather if the syndrome indicates there is 
an error, the indicated error will be in the first position, and no weight-two error can occur.

Of course, we need to encode and test the ancilla. A single fault in the encoding circuit might cause a high-weight 
error, so when we try to prepare the encoded |0> we get the encoded |1> instead (or a state one-deviated from the 
encoded |1>). We test the encoded ancilla by using yet another encoded ancilla, and reject the ancilla if it fails the 
test.



If there is only one fault in the preparation and verification of the two ancilla states, then if there is a fault in the 
preparation of one block (which might have a high-weight error) the other block has no errors. Therefore, if the 
ancilla being tested has an encoded error, the error will be detected and the ancilla will be rejected. The procedure 
checks only for X errors, not Z errors, but only the X error can propagate to the data when an accepted ancilla 
interacts with the data.

The full fault-tolerant procedures for Z and X error correction are:

Two other noteworthy points:

-- It is not actually necessary to apply the Z or X recovery operations. An efficient classical computation suffices to 
propagate the Z and X errors found in each syndrome measurement forward through the circuit, so we can 
interpret the measurement of a logical Z or logical X at the end of the circuit.

-- We can make the syndrome measurement procedure deterministic (i.e. avoid throwing away ancillas that fail the 
test) by preparing three ancilla blocks and consuming two of them in two tests of the third block. If both tests 
indicate that the ancilla is an encoded |1> rather than an encoded |0>, then we either perform a logical X to correct 
the ancilla, or we record that the ancilla is actually a |1> and propagate the logical error through the circuit by an 
efficient classical computation.



Fault-tolerant quantum gates
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Last time we considered the requirements for fault-tolerant quantum gates that act nontrivially on the codespace of a 
quantum error-correcting code. In the special case of a code that corrects t=1 error, the requirements are:

-- if the gate gadget is ideal (has no faults) and its input is a codeword, then the gadget realizes the encoded 
operation U acting on the code space.
-- if the gate gadget is ideal and its input has at most one error (is one-deviated from the codespace), then the 
output has at most one error in each output block.
-- if the gate has one fault and its input has no errors, then the output has at most one error in each block (the errors 
are correctable).

We considered the Clifford group, the finite subgroup of the m-qubit unitary group generated by the Hadamard gate 
H, the phase gate P (rotation by Pi/2 about the z-axis) and the CNOT gate. For a special class of codes, the 
generators of the Clifford group can be executed transversally (i.e., bitwise). The logical U can be done by applying a
product of n U (or inverse of U) gates in parallel (where n is the code's length). If we suppose that the number of 
encoded qubits is k=1, then:

-- the CNOT gate is transversal for any CSS code.
-- the H gate is transversal for a CSS code that uses the same classical code to correct X errors and Z errors. 
-- the P gate is transversal if the stabilizer generators have weight a multiple of 4, and the logical Pauli operators X 
and Z have weight = 1 (mod 4), or have weight = 3 (mod 4).  (In the latter case we do the transversal inverse of P to 
execute the logical P.)

In particular, Steane's [[7,1,3]] code has all of these properties, so we can do Clifford group computation 
transversally for that code. Transversal operations are fault tolerant: they don't propagate errors from one qubit in a 
block to another qubit in the same block, and a single faulty gate damages at most one qubit in each block.

Of course, the Clifford group is discrete so that the Clifford generators are not a universal gate set for quantum 
computing; in fact Clifford group computation can be simulated efficiently on a classical computer. So we need to 
consider how to augment our fault-tolerant Clifford gates with another gate that completes a universal set. But before 
we do that, let's generalize the observation that we can do Clifford group computation fault tolerantly. We will show 
this is possible for any stabilizer code. 

Specifically, we will show  (an observation that has useful applications even beyond the study of fault-tolerance):
The following operations suffice for realizing the Clifford group:
-- preparing the Z eigenstate |0>.
-- applying the Pauli operators X, Z to any qubit.
-- measuring weight-1 Pauli operators X, Y and measuring weight-two Pauli operators XX, ZZ, ZX.

This observation is useful in the study of fault tolerance because, for any stabilizer code, any logical Pauli operator 
can be realized as a Pauli operator (a tensor product of Pauli matrices) which is fault tolerant (r faults cause at most 
r errors in the block). Furthermore, we have seen that Pauli operators can be measured fault tolerantly, e.g. by using 
the cat-state method, repeating measurements, and doing majority voting on the observed outcomes. This is true 
even for the measurement of the tensor product of two logical Pauli operators in the same code block, since the 
weight-two logical Pauli operator is also just a tensor product of Pauli operators acting on qubits in the block.

As we already saw last time, since Clifford gates acting by conjugation take Pauli operators to Pauli operators, it is 
quite convenient to describe these gates in the "Heisenberg picture" -- i.e., in terms of their action on operators 
rather than states. 





And ... if the state preparations and measurements can be done fault tolerantly, so can the CNOT gate, if 
we insert an error correction state after each preparation or measurement. Furthermore, we can apply a 
CNOT gate from any encoded qubit in the control block to any encoded qubit in the target block, as long as 
we can measure the corresponding weight-two logical Pauli operators. 

Next, a circuit for the Hadamard gate H:





Now we have seen how to apply fault-tolerant Clifford group gates for any stabilizer code (since we can do 
Pauli operators, Pauli operator eigenstate preparations and Pauli operator  measurements fault-tolerantly).



But how do we go beyond the Clifford group and complete a universal fault-tolerant logical gate set? One thing we 
should recognize is that we cannot expect to be able to do all the logical gates in a universal set transversally. If the 
transversal operations that preserve the code space are actually universal, then these operations surely are a 
continuous set, so we can consider the infinitesimal operations in this set --- those that are very close to the identity 
operation. Because a transversal operation acting on a length-n codeblock is a product of n operations, each of which 
acts on only one qubit in the codeblock, an infinitesimal transversal operation V has the form



To complete the universal logical gate set, we will instead borrow the idea we have used to make error 
correction fault tolerant, and also to realize Clifford gates for arbitrary stabilizer codes. We prepare "offline" a 
special encoded ancilla state that can be verified, then use joint measurement on the data block and the ancilla 
to realize the desired gate. The principle behind this strategy is that it is easier to verify a known quantum state 
than to certify that a known unitary transformation has been properly applied to an unknown state. If the 
verification of the state fails, we can either repair the state or discard it and attempt to prepare again, without 
endangering the data.

When we think about how to complete the fault-tolerant gate set, it is useful to keep in mind a hierarchical 
classification of unitary gates --- the C_r classification.








