
"One-way" quantum computer (measurement based universal computation with cluster states)

We can do universal quantum computation by performing single-qubit measurements, if the measurements 
are performed on a suitably prepared entangled resource state.

An example is a cluster state, or more generally a graph state. Let's first consider the cluster state 
associated with a one-dimensional lattice of qubits, and see how to execute a universal set of single-qubit 
gates. Then we'll extend the discussion to a two-dimensional lattice, and see that we can do a CNOT gate 
as well, completing a universal gate set.

A cluster state is a stabilizer state, a simultaneous eigenstate with eigenvalue 1 of a set of commuting Pauli 
operators. In the one dimensional lattice, there is a stabilizer generator associated with the ith qubit, namely 
ZXZ acting on qubits i-1, i, i+1, unless the qubit is at the end of the chain. For the first qubit the stabilizer 
generator is XZ acting on qubits 1, 2, and for the nth (last) qubit is is ZX acting on qubits n-1 and n.

These stabilizers are mutually commuting. The generators i and i+1 collide on two qubits, and ZX 
commutes with ZX. The generators i and i+2 collide on a single qubit, where each applies Z. Since there 
are n qubits and n independent stabilizer generators, there is a unique state satisfying these conditions.

In order to have a single encoded qubit, let's eliminate the first stabilizer generator on the left edge of the 
lattice. Now we have a k=1 code. We can choose its encoded Pauli operators (which commute with the 
stabilizer and anticommute with one another) to be:

This code has distance d = 1, so its error correcting 
power is not impressive, but we would like to consider 
how the encoded information propagates through the 
lattice as we measure the qubits one at a time, starting 
at the left edge and working our way to the right. 

But first let's notice that it is very easy to prepare this 1D cluster state. Recall the action by conjugation of 
the controlled-Z gate on Pauli operators. 

Suppose that the initial state is a tensor product of n 
X-eigenstates |+>, and then controlled-Z is applied to 
each pair of neighboring qubits. The controlled-Z 
gates acting on different pairs of qubits are mutually 
commuting, so all can be applied in parallel in a 
single time step.

The controlled-Z gates transform the stabilizer IXI acting on three successive qubits to the stabilizer ZXZ
of the cluster state. We can apply the same construction to any graph: Starting with |+> at each vertex 
of the graph, we apply controlled-Z to each pair of qubits connected by an edge. The corresponding 
state is called a graph state. The term cluster state is used when the graph is a regular lattice, like the 
1D chain, or a 2D square lattice. 

What happens if we measure one of the qubits in the Z basis? If we measure the first qubit, we are just 
measuring the logical qubit in the Z basis. If we measure any other qubit, the stabilizer generator ZXZ is 
replaced by a new stabilizer generator IZI. This has the effect of breaking the entangled cluster state 
into the product of two cluster states, lying to the left and to the right of the measured qubit. 



The effect of measuring in the X basis is more interesting: Instead of splitting the cluster state in two, 
measuring X on a string of qubits glues together the chain to the left of the measured qubits with the 
chain on the right, yielding a single cluster state. For the chain with a logical qubit at the left end, 
suppose we measure the first qubit in the X basis. This does not measure the logical qubit; rather the 
logical qubit of the length-n chain is tranformed to the logical qubit on a chain of length n-1, and 
furthermore a nontrivial rotation is applied to the logical qubit. Recall that, before the measurement, we 
can multiply by a stabilizer element to obtain an equivalent form of the logical Z. Then if the 
measurement of X yields outcome (-1)^a:

We can now act on the second qubit with X^a (that is, do nothing if the measurement outcome is +1 
and apply X if the measurement outcome is -1). The result is that we have transformed the n-qubit 
cluster state to the (n-1)-qubit cluster state, and at the same time have applied a logical Hadamard 
transformation, which interchanges the logical X and Z. 

Another way to think about this is that we encode the state
one step at a time as we progress along the chain from left
to right. That is, we don't apply the controlled-Z gate to qubits
2 and 3 until after qubit 1 is measured. In that case, the X 
measurement on qubit 1 transforms a logical qubit carried by qubits 1 and 2 into a state carried by 
qubit 2 alone. After that we apply the controlled-Z to qubits 2 and 3 to transform to an encoded state 
carried by 2 and 3, etc. 

So ... if we measure two successive qubits, both in the X basis, we propagate the logical information two 
sites to the right, apart from a Pauli operator which is determined by the measurement outcomes. 

We can perform other nontrivial operations on the logical qubit by choosing other measurement bases. 
For example, suppose that we measure Y.

Up to a Pauli operator, we have applied HS to the input state,



Since S and H generate the single-qubit 
Clifford group, by measuring X and Y in the 
cluster state we can realize any Clifford 
transformation, up to a Pauli operator which is 
determined by the measurement outcomes.

For universal single-qubit computation, it would suffice to execute the T gate as well (the square root of 
the S gate). Consider what happens when we measure X and the input state is T |psi> rather than 
|psi>:

However ... remember we are executing the circuit using measurements only. We are not allowed to apply 
Pauli operators to compensate for the Pauli operators resulting from the measurement outcomes. And if 
we commute a T through an X the rotation angle flips. 

If we want to execute a circuit of H, S, and T gates, up to a known Pauli operator which is determined by 
the measurement outcomes, then each time we apply a T gate, we need to know whether the number of 
X's applied previously has been even or odd. 

In this sense, the execution of the circuit requires adaptive measurements --- each time we do a T gate, 
the measurement basis depends on outcomes of previous measurements. 

Now we want to see how to complete our universal gate set by adding an entangling two-qubit gate, 
namely a CNOT gate, where we expand the cluster state to 2D. We can use two ideas already 
discussed: (1) Z measurements eliminate qubits from the cluster state, so by doing such measurements 
we can "carve out" a circuit that can be realized as a planar graph. (2) A pair of X measurements on 
neighboring sites just propagates a qubit forward through the graph, up to a Pauli operator determined 
by measurement outcomes. So a string of X measurements acts like a wire that carries a qubit. This 
means it suffices to understand how the entangling gate works for a three-qubit cluster state with two 
encoded qubits. And in fact all we have to do is measure X for one of the qubits to realize the gate.

It is a bit more convenient to consider a four-qubit cluster state instead, where we measure X for two of 
the qubits. In fact only one of the measurements is needed for the entangling gate, the second 
measurement just executes an H gate on the target qubit. But we'll consider this two step procedure 
because this way we actually get an encoded CNOT gate, up to a Pauli operator. 



So this is a CNOT gate, up to a two-qubit Pauli operator!

If someone is kind enough to provide us with a sufficiently cluster state, just single-qubit 
measurements suffice to do any quantum computation we please. The height of the cluster state we 
need scales with the circuit width (number of qubits), and the length scales with the circuit depth 
(number of time steps).

Furthermore, the cluster state does not have to be prepared all at once, it is good enough for qubits to 
be added to the state just before these are needed to execute gates. 

The 1D cluster state as a symmetry-protected topological phase

The 1D cluster state is perhaps the simplest example of a phenomenon much studied in 
contemporary quantum condensed matter physics: it is a symmetry-protected topological phase (SPT 
phase).

First we remark that any stabilizer state or code can be interpretted as the (perhaps degenerate) 
ground space of a "commuting Hamiltonian". We take the Hamiltonian to be 

We find the lowest eigenstate of H by minimizing each term separately. (If minimizing all terms 
simultaneously is possible we say that H is "frustration free".)This enforces S_a = 1 for each a. The 
ground space of H is the code. Other eigenstates of H have energy higher by at least 2 min_a 
(alpha_a).

For the 1D cluster state, the Hamiltonian is "geometrically local" --- this means that each term in the 
Hamiltonian acts on a set of qubits that are close to one another on the 1D lattice. 

Let's consider an open line, where we omit the two stabilizer generators at the left and right ends of 
the line. Then the code space is four dimensional --- there are two encoded qubits, one localized 
near the left end and one near the right end. We call these "edge states" on the chain.



If the chain is n sites long, then the encoded Pauli operators acting on the left and right edges are 

Here L and R stand for left and right, 
and e.g. Z_1 means Z acting on the 
first qubit in the chain. 

We also note that this Hamiltonian has symmetries: there are operators which commute with the 
Hamiltonian, and hence map energy eigenstates (in particular ground states) to eigenstates with 
the same eigenvalue. There are two Pauli operators that commute with H:

A and B commute and both square to one. They generate a Z2 X Z2 symmetry. A acts on the odd 
sublattice and B acts on the even sublattice.

How do these symmetry operators act on the edge states? By multiplying by elements of the 
stabilizer, we see that acting on the code space we have 

So, acting on the ground space (but not on general states) A and B both factorize into a product of 
operators, one supported on the left end of the chain which acts on the left edge states, and the 
other supported on the right end of the chain which acts on the right edge states.  

A single X acting on a site does not commute with the Hamiltonian. When it acts on an odd site (say),
it creates two localized excitations ("quasiparticles") on the neighboring even sites. But a string of X's 
acting on successive odd sites (or successive even sites) creates an excitation only at the end of the 
chain.

The two symmetry operators A and B are "string" operators stretching from 
one end of the chain to the other. If we apply X to one site at a time, starting 
at the left edge and progressing toward the right edge, we view the string as 
the description of a process in which an excitation is created on the left, 
propagates across the bulk, and disappears on the right.



Note the difference between X and Z. If we apply Z to any site, an excitation is created at that site, 
whether of not we apply Z to other sites as well. But if we apply X's, excitations appear only at the end 
of the "string" of X's.

There are local operators which act on one of the two edges and preserve the ground space (the logical 
operators X_L and Z_L for example), but these do not respect the symmetries (they fail to commute 
with either A or B). For an operator to preserve the ground space and to act nontrivially on the left edge 
(fail to commute with X_L or Z_L), and also to have the symmetry (commute with A and B), the operator 
must be a nonlocal string operator, which actually acts on both edges at once. 

If we consider only the action on the ground space, the symmetry operators A and B factorize into a 
product of two operators, each with support on the left or right edge.

A_R and B_R act trivially on the excitation which is localized at the left edge, so it is really A_L and 
B_L which determine how the Z2 X Z2 symmetry acts on the left edge excitation. Now notice 
something interesting: While A and B commute, A_L and B_L anticommute instead --- they generate 
the Pauli group. Because these two operators both preserve the ground space, yet do not commute 
with one anothers, just the algebra of these symmetry operators is enough to inform us that the ground 
space must be degenerate (more than one dimensional), because acting with B_L must flip the 
eigenvalue of A_L:

What is happening here? Recall what it means for a quantum system to have a symmetry group G. 
Each element g of G is represented by a unitary transformation U(g), and since applying first g1 and 
then g2 must be physically equivalent to applying the product transformation g2 g1, we must have
U(g2) U(g1) = (phase) U(g2 g1).
Note that a nontrivial phase is allowed because quantum states are rays in Hilbert space. We might be 
able to remove the phases in the multiplication rule just by redefining the phases of { U(g) }, but if that 
is not possible we say the representation is projective. If fact, the Pauli matrices provide a projective 
representation of Z2 X Z2. What we have found is that the degenerate edge states on the left (or right) 
edge of the chain transform as a projective representation of the symmetry group G = Z2 X Z2 of the 
Hamiltonian. 

We can break the degeneracy of the left edge states by adding a term to the Hamiltonian which acts 
on qubits 1 and 2, such as ZI (which fails to commute with A) or XZ (which fails to commute with B). 
Note that to lift the degeneracy it suffices to break one Z2 or the other; it is not necessary to break 
both. From a group theory perspective, the remaining Z2 symmetry does not suffice to enforce the 
degeneracy because Z2 (unlike Z2 X Z2) does not have any projective representations. 

Now comes the really interesting point. Suppose we add to the Hamiltonian a small local perturbation 
(again a sum of geometrically local terms) which respects the Z2 X Z2 symmetry (commutes with both 
A and B). To be concrete, we might turn on a weak uniform "magnetic field"

Now the terms in the Hamiltonian are no longer mutually commuting, and diagonalizing H is not so 
easy. When the perturbation is weak, though, we can anticipate that



-- The low-lying states are still localized at the left and right edges.
-- The symmetry operators acting on the low-lying states still factorize into a product of operators 
localized at the edges. 
-- The states at one edge still transform as a projective representation of Z2 X Z2. 

But as we have noted, transforming as a projective representation is already enough to enforce the 
degeneracy of the states localized at the left (or right) edge. We conclude that the weak perturbation 
cannot lift the degeneracy. 

This argument is not precisely correct, because when we turn on the perturbation the factorization of 
A and B into operators which act on just one edge is not exact. Rather A = A_L A_R, where A_L is 
mostly supported near the left edge, but has action on the right edge which is exponentially 
suppressed in n, the length of the chain. So the correct conclusion is that when we turn on the 
perturbation the lifting of the edge state degeneracy is exponentially small in n.

We can understand how the degeneracy is lifted by thinking about doing a perturbation expansion in 
powers of b (the strength of the magnetic field). Applying X to site i can create a pair of excitations at 
sites i-1 and i+1, or it can move an excitation from site i-1 to i+1. In a sufficiently high order in 
perturbation theory a process occurs in which an excitation propagates across the bulk from the left 
edge to the right edge, but this process is suppressed by b^{O(n)}, where n is the length of the 
chain. In effect, the nonlocal string order which acts on both edges arises in this order, and the 
quantum "tunneling" of an excitation from one edge to the other breaks the degeneracy even though 
the symmetry is exact. The exact degeneracy is restored in the limit of an infinitely long chain.

To justify this argument, it is important that no small energy denominators arise in the perturbation 
expansion --- that is, the energy cost of creating an excitation in the bulk should be a positive 
constant independent of n. When the pertubation is strong enough, this may no longer be true (the 
bulk may become "gapless") and at that stage the edge-state degeneracy can be lifted substantially. 


