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Ph/CS 219b

Exercises
Due: Thursday 25 January 2018

1.1 More CSS codes

We’ve seen how to construct the [7,4,3] Hamming code, and its [7,3,4]
dual code. From this pair of classical linear codes we constructed a [[7,1,3]]
Calderbank-Shor-Steane (CSS) quantum code.

a) Using a similar method as in the construction of the [7,4,3] code, construct
a [15,11,3] classical linear code, and find its dual code. From this pair
of classical codes, show that a [[15,7,3]] CSS quantum code can be
constructed.

b) Generalizing further, construct a [[n, k, 3]] CSS code, where n = 2m − 1,
k = n − 2m, and m ≥ 3 is an integer.

1.2 Hamming’s hat game

Consider the following game with n players. For each player, a flip of a
fair coin determines whether that player wears a red hat or a blue hat, but
the player cannot see the color of her own hat. Then all the players enter a
room, so that each player can see the hat color of the other n−1 players, but
still not her own.

Now, all players make simultaneous moves, without knowing the moves
made by the other players. In a move, each player either guesses the color
of her own hat, or says “pass.” It at least one player correctly guesses her
own hat color, and no players guess wrong, then all the players win. But if
at least one player guesses wrong, or all players pass, then they all lose.

The players are allowed to confer before the game begins, and decide on a
strategy, before the hat colors are determined. Here is one possible strategy.
One of the n players is designated team captain. In each round of the game,
the captain guesses his hat is red, and all other players pass. With this
strategy, the players will win with probability 1/2, averaging uniformly over
the outcomes of the coin flips. Is there a better strategy that allows them to
win with higher probability?
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One might argue as follows. The hat colors of the players are completely
uncorrelated, because the n coin flips are independent. Therefore looking at
the other n−1 hats provides no useful information about one’s own hat color.
Thus no player can guess his hat color with probability of success better than
1/2 and the above strategy is optimal.

We can see that this reasoning is wrong by exhibiting a better strategy.
Consider the version of the game with n = 3 players. Suppose that each
player looks at the hats of the other two players. If she sees two hats of
different colors, she passes. If she sees two hats of the same color, then she
guesses that her hat is the opposite color.

This strategy succeeds if two of the three hats are the same color, and
the third hat is a different color. In that case, two players will pass, and the
one who guesses will guess correctly. The strategy fails if all three hats have
the same color. In that case all three players guess incorrectly.

Now, of the 8 possible choices for the three hat colors, there are 2 such
that all three hats are the same color, and 6 such that one hat is a different
color than the other two. Since all 8 choices are equiprobable, this means
that the players win the game with probability 3/4, which is greater than
1/2.

Note, though, that the expected number of right guesses is the same as
the expected number of wrong guesses. In the winning rounds, which occur
with probability 3/4, only one player guesses and that guess is correct. In
the losing rounds, which occur with probability 1/4, all three players guess
incorrectly. Therefore, these expected number of right guesses per round is
3/4, and the expected number of wrong guesses is also 3/4. In this sense,
we were correct to suspect that right and wrong guesses are equally likely.
Nevertheless, winning with probability greater than 1/2 is possible with this
strategy, because there are multiple wrong guesses in the losing rounds, and
just one right guess in the winning rounds.

Thinking more deeply about this strategy, we recognize the structure of
an underlying error-correcting code, namely the three-bit repetition code for
which RRR and BBB are valid codewords, where R denotes a red hat and
B denotes a blue hat. Each player, after observing the other two hats, asks
herself whether it is possible to choose her own hat color so that the three
hat colors define a valid codeword. If not she passes; if so she guesses that
her own hat color is such that the three hat colors are not a valid codeword.
This strategy fails only if the players are dealt a valid codeword, which occurs
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with probability 1/4.

a) Now consider the version of the game with n = 7 players. Find a strategy
that wins the game with probability 7/8 and prove that it works. Hint:
The title of this problem is a clue.

b) Generalize this strategy to the case n = 2m−1, where m ≥ 2 is an integer.
What probability of winning can be achieved?

1.3 Polynomial CSS codes

Consider a pit that takes the p possible values {0, 1, 2, . . . , p − 1}, where
p is prime. The set {0, 1, 2, . . . , p − 1} can be regarded as a finite field Fp

with addition and multiplication defined modulo p; Fp is a field because each
nonzero element has a multiplicative inverse.

In this exercise, you will study the properties of a family of quantum codes
for qupits (p-level quantum systems). These quantum codes are related to
linear classical codes that are vector spaces over the field Fp. We will refer
to the quantum codes as polynomial CSS codes.

Let x0, x1, . . . xn−1 (where n ≤ p) be specified distinct elements of Fp, and
consider a classical code C1 that contains all strings of n elements of Fp of
the form

(

f(xn−1), f(xn−2) . . . , f(x2), f(x1), f(x0)
)

, (1)

where f(x) is a polynomial of degree at most m with coefficients in Fp. (The
code depends on how the elements x0, x1, . . . xn−1 of Fp are chosen. Different
codewords within the code are obtained by varying the polynomial f .)

a) Show that C1 is a vector space over Fp.

b) The weight of a vector in F
n
p is the number of nonzero components of the

vector, and the distance of a linear code is the minimum weight of a
nonzero vector in the code. Show that the distance d1 of C1 satisfies

d1 ≥ n − m . (2)

[Hint: A nonzero polynomial f(x) of degree m has at most m zeros
over the field Fp.]
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Now let C2 be the subcode of C1 such that f(x) has degree at most m−1.

c) Show that C2 is a vector space over Fp, and a subspace of C1.

d) Suppose that {z1, z2, . . . , zm} are distinct elements of Fp, and that {y1, y2, . . . , ym}
are arbitrary elements of Fp (not necessarily distinct). Show that there
is a polynomial f(x) of degree less than m such that

f(z1) = y1 ,

f(z2) = y2 ,

·
·

f(zm) = ym . (3)

[Hint: It is easy to construct such a polynomial f(x) explicitly.]

e) The code C⊥
2 dual to C2 contains all vectors in F

n
p that are orthogonal to

all vectors in C2. Show that the distance d2 of C⊥
2 satisfies

d2 ≥ m + 1 . (4)

[Hint: Choose any m components of the n-component C2 codewords,
and consider the corresponding projection of C2 into F

m
p . Using the

result of (d), show that the image of C2 under this projection is all
of F

m
p . Conclude that any vector orthogonal to all vectors in C2 must

have weight at least m + 1.]

f) Now consider a quantum error-correcting code of the CSS type, based on
the codes C1 and C2 ⊂ C1. We can choose a basis for the code space
such that each element of the basis is a uniform superposition of all C1

codewords that belong to the same C2 coset. What is the number of
encoded qupits? (How many distinct C2 cosets are contained in C1?)

g) A CSS code can correct t errors if d1 ≥ 2t + 1 and d2 ≥ 2t + 1. Explain
how to construct polynomial CSS codes that encode one qupit, correct
t errors, and have block size 4t+1. For what values of p can such codes
be constructed?
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1.4 Generating the Clifford Group

Recall that the n-qubit Pauli group is defined as

Pn = {I , X, Y , Z}⊗n × {±1,±i} (5)

where X, Y , Z are the 2 × 2 Pauli matrices. That is, each element of Pn

is (up to an overall phase ±1,±i) a tensor product of Pauli matrices and
identity matrices acting on the n qubits. The n-qubit Clifford group Cn is
the normalizer of the Pauli group – a unitary operator U acting on n qubits
is contained in Cn iff

UMU
−1 ∈ Pn for each M ∈ Pn . (6)

That is, U acting by conjugation takes a tensor product of Pauli matrices
to a tensor product of Pauli matrices. Actually, an element of the Clifford
group is defined as this action by conjugation, so that the overall phase of U

is not relevant.
In this exercise, you will show that the Clifford group can be generated

by three quantum gates: the single-qubit gates H and S, and the two-qubit
gate CNOT= Λ(X). Here H denotes the Hadamard gate

H =
1√
2

(

1 1
1 −1

)

(7)

(a rotation by π about the axis x̂ + ẑ), and S denotes the phase gate

S =

(

1 0
0 i

)

(8)

(a rotation by π/2 about the ẑ axis). It follows that quantum circuits con-
structed from these gates can be efficiently simulated by a classical computer,
because the action of Cn on Pn can be succinctly described and easily updated
after each gate.

a) Compute how H , S, and Λ(X) act on Pauli operators by conjugation,
and verify that H and S are in C1 and that Λ(X) is in C2.

b) Show that H and S generate C1. [Hint: Note that the elements of the
one-qubit Clifford group are the permutations of X, Y , Z, with minus
signs appropriately chosen so that the product XY Z = iI remains
invariant.]
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c) Let Λ(σ) denote the two-qubit gate that applies σ to the target qubit
if the control qubit is |1〉, and acts trivially if the control qubit is |0〉.
Let σj denote σ acting on qubit j. Show that Λ(Z) and Λ(Y ) can be
constructed from Λ(X), H , and S. Show that

Λ(σ)Z1Λ(σ) = Z1, Λ(σ)X1Λ(σ) = X1σ2 , (9)

where qubit 1 is the control of the Λ(σ) and qubit 2 is its target. Here
σ is one of X, Y , Z, so that in particular σ

2 = I.

We will prove that H , S, and Λ(X) generate Cn by induction. We have
already shown (b). Now assume, as an inductive hypothesis, that H , S, and
Λ(X) generate Cn. We need to show that they generate Cn+1.

d) Suppose that U is an element of Cn+1. Show that there is a W generated
by H , S, and Λ(X) such that the action of WU by conjugation is

WU : X1 → X1M

Z1 → Z1N . (10)

where each of M , N is a tensor product of Pauli matrices acting on
qubits 2 through n + 1.

e) Now consider
V ≡ Λ(M)H1Λ(N)H1W U , (11)

where Λ(M ) denotes the transformation controlled by the first qubit
that applies M to the other n qubits, and similarly for Λ(N). Note
that Λ(M) and Λ(N) can be constructed from H , S, and Λ(X). It
follows from (c) that the action of Λ(M) by conjugation is

Λ(M ) : X1 → X1M

Z1 → Z1 . (12)

Show that the action of V by conjugation is

V : X1 → X1

Z1 → Z1 . (13)

f) Show that V is in Cn, and therefore can be constructed from H , S, and
Λ(X). Show that U can also be constructed from H , S, and Λ(X).
This completes the inductive step, and the proof.


