Ph/CS 219h

Exercises
Due: Thursday 8 February 2018

2.1 A cleaning lemma for CSS codes

In class we proved the cleaning lemma for stabilizer codes, which says
the following: For an [[n, k]] stabilizer code, let M denote a subset of the n
qubits in the code block, and let M€ denote the complementary set of qubits.
If x is one of the code’s logical Pauli operators, we say that x can be cleaned
on M if there is a logically equivalent Pauli operator 2’ = zy (where y is an
element of the code stabilizer S) such that 2’ acts nontrivially only on M¢:
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We say that x can be supported on M if it can be cleaned on M€ Let
g(M) denote the number of independent logical Pauli operators that can
be supported on M and let g(M¢) denote the number of independent Pauli
operators that can be supported on M¢. Then the cleaning lemma asserts
that

g(M) + g(M®) = 2k. 2)

In particular, therefore, if no logical operator can be supported on M, then
the complete k-qubit logical Pauli group can be supported on its complement.
Now consider the case of an [[n, k|] CSS stabilizer code, where all gen-
erators of the code stabilizer can be chosen to be either of the X type (a
tensor product of X’s and I’s) or the Z type (a tensor product of Z’s and
I'’s); furthermore, the generators of the logical Pauli group can also be chosen
to be either X type or Z type. Let ¢g*(M) denote the number of indepen-
dent X-type logical Pauli operators supported on M, and let g#(M¢) denote
the number of independent Z-type logical Pauli operators supported on M¢.

Show that
g (M) + g7 (M€) = k. 3)

It follows that if no X-type logical Pauli operators can be supported on M,
then all Z-type logical operators can be supported on its complement.

For your convenience, the proof of eq.(2) is appended to the end of this
assignment.



2.2 Good CSS codes

In class we derived the quantum Gilbert-Varshamov bound:
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This is a sufficient condition for the existence of a (possibly degenerate) bi-
nary stabilizer code that can correct all Pauli operators in a set £; here |£(?)]
denotes the number of distinct Pauli operators of the form EEj,, where
E.,, E, € £ One consequence of this bound is that there exist “good”
[[n,k,d = 2t 4 1]] stabilizer codes that achieve an asymptotic rate R =
k/n=1— Hy(2t/n) — (2t/n)log, 3.

The purpose of this exercise is to show that good Calderbank-Shor-Steane
(CSS) codes exist.

a) Derive a quantum Gilbert-Varshamov bound for CSS codes. Denote by
EX the set of X-type errors that the code can correct (those that can
be expressed as a tensor product of X’s and I’s) and denote by &%
the set of Z-type errors that the code can correct (those that can be
expressed as a tensor product of Z’s and I’s). Denote by £X(2) the set
of {EIE,} where E,, E, € £X, and similarly for £42). The quantum
Gilbert-Varshamov bound for CSS codes is a sufficient condition for the
existence of a CSS code with nx stabilizer generators of the X type
and ny stabilizer generators of the Z type that can correct all errors
in £X and £7, expressed as an inequality involving nx, nz, |EX®| and
|€Z(2)|.

b) Use the quantum Gilbert-Varshamov bound for CSS codes to show the
existence of CSS codes that achieve the asymptotic rate R = k/n =
1 — Hy(2tx/n) — Ha(2tz/n), where the code can correct txy X errors
and t; Z errors.

For your convenience, the proof of eq.(4) is appended to the end of this
assignment.



2.3 Shortening a quantum code

a) Consider a binary [[n, k,d]] stabilizer code. Show that it is possible to
choose the n — k stabilizer generators so that at most two act nontriv-
ially on the last qubit. (That is, the remaining n — k — 2 generators
apply I to the last qubit.)

b) These n—k—2 stabilizer generators that apply I to the last qubit will still
commute and are still independent if we drop the last qubit. Hence they
are the generators for a code with length n—1 and k+1 encoded qubits.
Show that if the original code is nondegenerate, then the distance of
the shortened code is at least d — 1. (Hint: First show that if there
is a weight-t element of the (n — 1)-qubit Pauli group that commutes
with the stabilizer of the shortened code, then there is an element of
the n-qubit Pauli group of weight at most ¢ + 1 that commutes with
the stabilizer of the original code.)

¢) Apply the code-shortening procedure of (a) and (b) to the [[5, 1, 3]] QECC.
Do you recognize the code that results? (Hint: It may be helpful to
exploit the freedom to perform a change of basis on some of the qubits.)

2.4 Correcting a shift

Operators acting on a d-level quantum system (or qudit) can be expanded
in terms of the d? “Pauli operators”

Xezb a,b=0,1,2,...,d—1. (5)

Here X and Z are generalizations of the Pauli matrices o, and o,, which act
in a particular basis {|j),7 =0,1,2,...,d — 1} according to

X 2 gy =15+ 1 (mod d)) ,
Z gy =) (6)
where w = exp(27i/d). Note that it follows that
ZX =wX7 . (7)

An error acting on a qudit can be expanded in this basis.



Suppose that errors with |al|, || small compared to d are common, but
errors with large |a| and |b| are rare. We wish to design a quantum error-
correcting code that corrects these small “shifts” in the amplitude or phase
of the qudit.

For d = nryry (where n, r and ro are positive integers), consider the
stabilizer generators

Mx =X"1, My=27""7. (8)
a) Verify that My and My, commute.
b) Find the commutation relations of My with XZ% and of M, with X*Z°.

¢) Find two generators of the normalizer group of the code (the group of
Pauli operators that commute with the stabilizer). What commutation
relations are satisfied by these normalizer generators? What is the
dimension of the code subspace?

d) How large an amplitude shift |a| and phase shift |b| can be corrected by
this code?

Cleaning lemma for stabilizer codes
Here is the proof given in class.

We regard the abelianized n-qubit Pauli group P as a (2n)-dimensional
vector space over the binary field Fy, and say that the vectors z and y are
orthogonal if the corresponding elements of P commute. Let Py, denote the
subspace of P which is supported on the subset M of the n qubits. Let S
denote the stabilizer of an [[n, k]] quantum stabilizer code. Let [T] denote
the dimension of a subspace T'.

We may express S as

S=8y®Sy-®S5. 9)

Here Sy; = S N Py is the subspace of S which is supported on M, Sy =
S N Pyse is the subspace of S which is supported on M¢, and S’ is a third
subspace of S. For any vector z, we may consider its restriction x|y to the
set M. For a Pauli operator x = 11 ® x5, with x; supported on M and x5
supported on M€, its restriction to M is 1 ® I.



Now consider the restriction S’| 5 of S” to M. We claim that [Sy @S| v]| =
Sy &S] = [Su] + [97]. That is, linearly independent vectors in Sy + S
remain linearly independent when restricted to M. If this were not so, then a
nontrivial linear combination of these vectors would have a trivial restriction
to M, and would therefore be contained in Syye.

Let’s compute the dimension [(S*), ] of (S*),, = S+ N Py, where S*
is the orthogonal complement of S in P. Note that, because Sysc is triv-
ially orthogonal to Py, [(Sl) A7) 18 the orthogonal complement in Py of the
restriction Sy @ S’|ar of Sy S’ to M. Therefore, by counting dimensions,

[(S1) 3] = [Pu] = [Su @ §'|aa] = [Pa] = [Su] = [S]- (10)
By applying the same reasoning with M replaced by M¢, we have
[(ST) ] = [Pare] = [Sne @ ' ase] = [Pase] = [Sae] — [5]. (11)

Logical operators supported on M are elements of Py, which commute
with the stabilizer and are not contained in the stabilizer (and same for M°);
therefore

g(M) = [(57),,] = [Su] = [Pu] = 2[Su] =[5,
g(M) = [(5F) ) = [Sue] = [Pue] = 2[Sne] — [5], (12)
and hence
g(M) +g(M®) = [Pu] + [Pue] = 2([Sm] + [Sue] + [57])
= [P]—2[S]=2n—2(n—k) =2k, (13)

as we wanted to show.

An important caveat: For a logical operator z € S+ \ S, there might
exist y, ¥’ in S such that zy is supported on M and zy’ is supported on
Me¢. Therefore, we may not conclude from eq.(2) that each of the code’s 2k
independent logical Pauli operators can be supported on either M or M°¢.

However, if erasure of M is correctable, then g(M) = 0 and we conclude
that g(M¢) = 2k, so that all logical Pauli operators may be supported on
Me.



Quantum Gilbert-Varshamov bound
Here is the proof given in class.

Let S denote the set of all [[n, k]| quantum stabilizer codes. We want to
show that this set contains a code that corrects all errors in £. That is, we
are seeking a code in S with stabilizer S such that S\ S contains no element
of E&\ I.

Consider this bipartite graph: Vertices on the left are labeled by codes in
S and vertices on the right are labeled by n-qubit Pauli operators, excluding
the identity. For each code (with stabilizer S), we draw edges connecting
that code’s vertex to each of its nontrivial logical operators — that is, to
each Pauli operator in S\ S. Our goal, then, is to show that there is some
code which is not connected by an edge to any element of £2 \ I. We’ll do
that by showing that the total number of edges which connect with elements
of £\ I is smaller than the number of elements of S. Thus, once we
eliminate from S all the codes that fail to correct &£, there must be at least
one code left over, which does correct £.

Now, each stabilizer code with n— k generators has |S+\ S| = 27++—2n—F
nontrivial logical operators; thus there are 2% —2""% edges connecting to
each vertex on the left. For each nonzero Pauli operator x on the right,
there is an edge connecting it to the code with stabilizer S if and only if = is
contained in S\ S. Note that the number N, of such edges does not depend
on x.

There are two ways to count the total number of edges, which must agree:
the number of codes |S| times the number of edges connecting to each code
equals the number of nontrivial Pauli operators times the number of edges
connecting to each nontrivial Pauli operator, or

B 1— 2—2n
S] (24 = 2078 = (22 — 1) N, = |S|/N, =2~ (ﬁ) -9

Finally, note that the total number of codes connecting to at least one element
of EP\ I is no larger than (|| — 1) - N,; therefore, a code which corrects
£ (one connecting to no elements of £?) \ I) surely exists provided that

S| > (1P - 1) - N, (15)

from which eq.(4) follows.



