Ph/CS 219b

Exercises
Due: Thursday 22 February 2018

3.1 Bound on D-dimensional codes

In class we proved a bound on [[n, k, d]] for local stabilizer codes in 2 dimensions: kd* =
O(n), where k is the number of encoded qubits, d is the code distance, and n is the code
length. For your convenience, the proof is appended to the end of this assignment.

Using similar reasoning, derive a bound on D-dimensional stabilizer codes of the form
kd* = O(n). Express « in terms of D.

3.2 Price of a code

The distance d of a stabilizer code is the size of the smallest set of qubits in the code black
that supports a nontrivial logical operator. In contrast, the price p of a code is defined as the
size of the smallest set of qubit that supports all of the codes logical operators. Evidently
p=>d.

a) What is the price of the [[7,1,3]] quantum code?
b) Use the cleaning lemma to show that p <n —d+ 1.

¢) Show that p > k+ d — 1. Hint: Use this result proved in class: Suppose that the code
block can be divided into three parts ABC such that A and B are both correctable.
Then k < |C], where |C] is the number of qubits in C.

Note that the results from (b) and (¢) imply n — k > 2(d — 1), the quantum Singleton bound.

3.3 Price of a local code

Show that the price p of a D-dimensional stabilizer code satisfies the bound p = O(nd~/(P~1)).
Hint: Use the holographic principle and the union lemma. (See the discussion appended to
the end of this assignment.)

3.4 Higher-dimensional toric codes

To understand the logical operators of the 2D toric code, we found it convenient to use
the concept of a chain complex. We defined vector spaces Vo, V1, Vo over F? and boundary
operators Oy, Js such that

Vo 5V 25 1 (1)
and
81 o) 82 = 0. (2)



For example, for the purpose of formulating the Z-type logical operators of the toric code,
vectors in V5 are 2-chains, which assign a bit to each lattice plaquette, vectors in V; are
1-chains, which assign a bit to each edge, and vectors in V{ are 0-chains, which assign a bit
to each site. We saw that a 2-chain w may be interpreted as a stabilizer element (a product
of Z-type plaquette operators), a 1-chain € may be interpreted as a Z-type error operator,
and the 0-chain ¢ = d;€ may be interpreted as the syndrome of € (determined by measuring
the X-type site operators). The property 0; o d = 0 expresses that a Z-type stabilizer
operator has a trivial syndrome.

A Z-type operator which lies in the code stabilizer S is the boundary dsw of some 2-chain
w; it is contained in the image of 9. A Z-type operator e which lies in the normalizer S+
(commutes with the stabilizer) is a I-cycle with trivial boundary, 0;e = 0; it is contained in
the kernel of 9;. Thus the code’s Z-type logical Pauli operators are elements of the coset
space. Ker(dy)/Im(0s).

We have also seen how this chain-complex language can be applied to any CSS stabilizer
code. In this problem, we’ll apply it to toric codes in more than 2 dimensions.

Consider a 3D version of the toric code defined on an L x L x L cubic lattice with periodic
boundary conditions. Qubits reside on lattice links. There is a weight-4 Z-type stabilizer
generator associated with each lattice plaquette, and a weight-6 X -type stabilizer generator
associated with each lattice site.

a) Construct a chain complex suited for describing the Z-type logical operators of this
code, and find the logical operators. How many encoded qubits are there? What is
the minimal weight dz of a Z-type logical operator?

b) Construct a chain complex suited for describing the X-type logical operators of this
code, and find the logical operators. Check that these X-type logical operators have
the expected commutation relations with the Z-type logical operators. What is the
minimal weight dx of an X-type logical operator?

Consider a 4D version of the toric code defined on an L x L x L x L hypercubic lattice with
periodic boundary conditions. Qubits reside on lattice plaquettes. There is a weight-6 Z-
type stabilizer generator associated with each lattice cube, and a weight-6 X-type stabilizer
generator associated with each lattice link.

¢) Construct a chain complex suited for describing the Z-type logical operators of this code,
and find the logical operators. How many encoded qubits are there? What is the
minimal weight dz of a Z-type logical operator?

d) Construct a chain complex suited for describing the X-type logical operators of this
code, and find the logical operators. Check that these X-type logical operators have
the expected commutation relations with the Z-type logical operators. What is the
minimal weight dx of an X-type logical operator?



A bound on topological stabilizer codes

We say that a stabilizer code family is local if we may choose all stabilizer generators to
be geometrically local in D spatial dimensions, for some finite D. If in addition the code
distance d increases with the code length n, we say that the code is topological. For example,
if the qubits are arranged in a D-dimensional (hyper)cubic lattice, the code is local if each
stabilizer generator has its support on a (hyper)cube with side length r, where r is a constant
independent of the length n of the code. When a code is local in D dimensions, we may call
it a D-dimensional code, dropping the word “local” which is understood. We say that r is
the range of the code generators. Note that for a topological code family, any set of qubits
of constant size is correctable for sufficiently large n.

In class we proved a bound on the code parameters [[n, k, d]] for two-dimensional (2D)
stabilizer codes: kd* = O(n). Here we review the argument leading to this conclusion.

The proof of the bound makes use of three lemmas — the cleaning lemma, the union
lemma, and the expansion lemma. The cleaning lemma for stabilizer codes asserts that for
any correctable set M and logical Pauli operator x, we may choose x to be supported on
the complement M¢ of M. That is, for any logical operator x (commuting with the code
stabilizer S) there exists y € S such that zy is supported on M€¢. A proof of the cleaning
lemma was appended to Problem Set 2.

We say that two sets of qubits are separated if no stabilizer generator has support on
both sets. For a 2D code this is ensured if no r X r square intersects with both sets. The
union lemma says that if M; and M, are separated and both are correctable, then their
union M; U M, is also correctable. To prove the union lemma by contradiction, suppose
that M; U Ms is not correctable, in which case there exists a nontrivial logical operator x
supported on M; U Ms, of the form

xr = (yl)M1 ® (y2)M2 ® I(MlUMZ)C‘ (3)

Because x is logical, it commutes will all stabilizer generators, and since no generator has
support on both M; and M, it must be that

1= (Y1), ® Do, @ Iinyunye  and  x2 = Iy, @ (Y2)ar, @ Liar,unsy)e (4)

also commute with all stabilizer generators, and hence are logical. Furthermore, since x =
r1x2, and x is nontrivial, either x; or o must be nontrivial. This contradicts our assumption
that M; and M are correctable, proving the lemma.

The expansion lemma requires a bit more explanation. Let M’ denote the support of
all stabilizer generators which act nontrivially on M. The external boundary Oy M of M is
M’ 0 M€, and the internal boundary O_M of M is (M¢)' N M. For a local code with range
r, we may visualize 0y M as a thin shell surrounding M (with thickness no greater than r),
while 0_M 1is a thin shell surrounding M¢. The expansion lemma specifies conditions under
which we can slightly augment the size of a correctable set while preserving its correctability.
It asserts the following: Suppose that M = NA (that is, M = N U A, where N and A are
disjoint). Suppose further that A contains 0_M, and that N, A, and 0, M are correctable.
Then M is correctable.



To prove the expansion lemma by contradiction, suppose that M is not correctable, in
which case there is a nontrivial logical Pauli operator x which is supported on M. Further-
more, because A is correctable, there is a stabilizer element y, which we may choose to be
supported on M’, such that z = xy is cleaned on A:

2= (w)Ny @14 ®@vo, M @ Iaprye. (5)

Because z is logical, it commutes with all stabilizer generators, and because A C d_M, no
stabilizer generator acts nontrivially on both N and 0, M. Therefore, the restriction z; of z
to N is logical, and the restriction z3 of z to 0, M is also logical. Furthermore, since z = 2129
and z is nontrivial, either z; or z; must be nontrivial. This contradicts our assumption that
N and 0, M are correctable, proving the lemma.

Next, we use the cleaning lemma and expansion lemma to infer the holographic princi-
ple for 2D codes, which asserts that, for some constant «, any square on the lattice with
side length ¢ = ad is a correctable set of qubits. Note that this is not obvious, since the
number of qubits contained in the square is €(d?), and hence, for a topological code family
becomes much larger than the code distance d (the size of the smallest noncorrectable set)
for sufficiently large n.

To prove the holographic principle, consider two concentric squares N and M, where N
has side length ¢ — 4r, and M has side length ¢ — 2r; therefore, M’ is contained in a square
with side length ¢, and A = M \ N contains 0_M. The expansion lemma ensures that
M is correctable if N, A, and 0, M are all correctable. By definition of distance a set is
correctable if it contains fewer than d qubits, and therefore 9, M and A are both correctable
provided that

0, M| < |M'| — |M| <% — (0 —2r)* < 4rl < d. (6)

Now imagine starting with a small square, with area less than d so that the square is
correctable, and gradually increasing the side length step-by-step, where the length grows
by 2r in each step. According to eq.(6), the square continues to be correctable as long as the
side length ¢ remains less than d/4r. This proves the holographic principle. We call this the
holographic principle, somewhat whimsically, because if logical information is encoded in the
square, then some of that logical information (though perhaps not all) must be accessible
near the square’s boundary.

To prove our bound on [[n, k, d]] we need one more result, which applies to more general
binary quantum codes, not just to stabilizer codes. Suppose the code block is divided into
three regions ABC', where A and B are both correctable. Then the number k of encoded
qubits can be no larger than |C|, the number of qubits in C. I proved this in class using
properties of the Von Neumann entropy, and I won’t repeat the proof here.

Now we are ready to prove the bound. For a 2D stabilizer code, consider partitioning
the code block into three sets ABC' as shown here:



Each connected component of A is a square with side length less than d/4r, with corners
clipped off as shown, and same for B. Each connected component of C' has constant size, but
is sufficiently large to separate the components of A by a distance larger than the range r of
the stabilizer generators (and same for B). By the holographic principle, each component of
A is correctable, and because the components are separated, A is correctable by the union
lemma. Likewise, B is also correctable. The number of components of C' is O(n/d?), and
each component has constant size. We conclude that

k <|C|=0(n/d*), (7)

which proves the bound.



