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Ph219C/CS219C

Exercises
Due: Thursday 16 May 2024

3.1 Noisy superdense coding and teleportation.

a) By converting the entanglement achieved by the mother protocol
into classical communication, prove the noisy superdense coding
resource inequality:

Noisy SD : 〈φABE〉+H(A)[q → q] ≥ I(A;B)[c→ c]. (1)

Verify that this matches the standard noiseless superdense coding
resource inequality when φ is a maximally entangled state of AB.

b) By converting the entanglement achieved by the mother protocol
into quantum communication, prove the noisy teleportation re-
source inequality:

Noisy TP : 〈φABE〉+ I(A;B)[c→ c] ≥ Ic(A〉B)[q → q]. (2)

Verify that this matches the standard noiseless teleportation re-
source inequality when φ is a maximally entangled state of AB.

3.2 Degradability of amplitude damping and erasure

The qubit amplitude damping channel NA→B
a.d. (p) discussed in §3.4.3

has the dilation UA→BE such that

U :|0〉A 7→ |0〉B ⊗ |0〉E ,
|1〉A 7→

√
1− p |1〉B ⊗ |0〉E +

√
p |0〉B ⊗ |1〉E ;

a qubit in its “ground state” |0〉A is unaffected by the channel, while
a qubit in the “excited state” |1〉A decays to the ground state with
probability p, and the decay process excites the environment. Note
that U is invariant under interchange of systems B and E accompanied
by transformation p ↔ (1 − p). Thus the channel complementary to
NA→B

a.d. (p) is NA→E
a.d. (1− p).
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a) Show that NA→B
a.d. (p) is degradable for p ≤ 1/2. Therefore, the

quantum capacity of the amplitude damping channel is its opti-
mized one-shot coherent information. Hint: It suffices to show
that

NA→E
a.d. (1− p) = NB→E

a.d. (q) ◦ NA→B
a.d. (p), (3)

where 0 ≤ q ≤ 1.

The erasure channel NA→B
erase (p) has the dilation UA→BE such that

U : |ψ〉A 7→
√

1− p |ψ〉B ⊗ |e〉E +
√
p |e〉B ⊗ |ψ〉E ; (4)

Alice’s system passes either to Bob (with probability 1 − p) or to
Eve (with probability p), while the other party receives the “erasure
symbol” |e〉, which is orthogonal to Alice’s Hilbert space. Because U
is invariant under interchange of systems B and E accompanied by
transformation p↔ (1− p), the channel complementary to NA→B

erase (p)
is NA→E

erase (1− p).

b) Show that NA→B
erase (p) is degradable for p ≤ 1/2. Therefore, the

quantum capacity of the erasure channel is its optimized one-shot
coherent information. Hint: It suffices to show that

NA→E
erase (1− p) = NB→E

erase (q) ◦ NA→B
erase (p), (5)

where 0 ≤ q ≤ 1.

c) Show that for p ≤ 1/2 the quantum capacity of the erasure channel
is

Q(NA→B
erase (p)) = (1− 2p) log2 d, (6)

where A is d-dimensional, and that the capacity vanishes for
1/2 ≤ p ≤ 1.

3.3 Approximate cloning and the depolarizing channel

Consider a qubit channel NA→B with the isometric dilation UA→BEF

which acts on an orthonormal basis as

|0〉A 7→ |φ0〉BEF = cos θ|00〉BE |0〉F + sin θ|ψ+〉BE |1〉F , (7)

|1〉A 7→ |φ1〉BEF = cos θ|11〉BE |1〉F + sin θ|ψ+〉BE |0〉F , (8)
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where

|ψ+〉 =
1√
2

(|01〉+ |10〉) , (9)

and 0 ≤ θ ≤ π/2. Here we have split the channel’s environment into
two parts labeled E and F , and we have constructed the isometry to
be symmetric under the interchange of B and E. Hence the channel
NA→B obtained by tracing out EF is identical to the channel NA→E

obtained by tracing out BF . Evidently NA→B is antidegradable, be-
cause we can obtain the N from its complementary channel NA→EF

c

simply by tracing out F . It follows that, as for any antidegradable
channel, NA→B has zero capacity. Putting it more prosaically, if Alice
sends a quantum state to Bob via many uses of the isometry UA→BEF ,
and Bob is able to decode the state with high fidelity, then Eve receives
the same output as Bob and therefore she can decode the state as well.
Thus the no-cloning theorem ensures that high-fidelity decoding of the
output is not possible.

a) The channel NA→B is actually a Pauli channel, which can be ex-
pressed as

N (ρ) = f(θ)ρ+ g(θ)ZρZ + h(θ)
I

2
. (10)

Find the functions f , g, and h.

b) We may choose a value θ = θ0 such that g(θ0) = 0, in which case
N becomes a depolarizing channel with error probability p:

N (ρ) =

(
1− 4p

3

)
ρ+

(
4p

3

)
I

2
. (11)

Find this value θ0 and the corresponding value of p. Our no-
cloning argument shows that the depolarizing channel with this
error probability p has zero capacity.

c) Tracing out F from the isometry UA→BEF , we obtain a channel
NA→BE , which may be regarded as an approximate cloning ma-
chine. If Alice sends a pure state |ψ〉 through the channel, the
marginal density operators ρB and ρE received by Bob and Eve
are identical, each approximating the input state with fidelity

F = 〈ψ|ρB|ψ〉 = 〈ψ|ρE |ψ〉. (12)

For the value θ = θ0 found in (b), compute the fidelity achieved
by this approximate cloner.
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d) For θ 6= θ0, we have g(θ) 6= 0, and therefore the fidelity achieved by the
approximate cloner depends on the pure state input |ψ〉. In that case
we may consider the worst-case fidelity Fmin(θ), the lowest value of F
achieved for any pure state input to NA→BE . Find the value θ = θ1
such that this worst-case fidelity is as large as possible and compute
Fmin(θ1). (Be sure to recall that g(θ) changes sign at θ = θ0.)

3.4 Proof of the decoupling inequality

In this problem we complete the derivation of the decoupling inequality
sketched in §10.9.1. Equation numbers of the form (10.xxx) refer to
Chapter 10 of the lecture notes.

a) Verify eq.(10.336).

To derive the expression for EU [MAA′(U)] in eq.(10.340), we first
note that the invariance property eq.(10.325) implies that EU [MAA′(U)]
commutes with V ⊗V for any unitary V . Therefore, by Schur’s lemma,
EU [MAA′(U)] is a weighted sum of projections onto irreducible repre-
sentations of the unitary group. The tensor product of two fundamen-
tal representations of U(d) contains two irreducible representations —
the symmetric and antisymmetric tensor representations. Therefore
we may write

EU [MAA′(U)] = csym Π
(sym)
AA′ + canti Π

(anti)
AA′ ; (13)

here Π
(sym)
AA′ is the orthogonal projector onto the subspace of AA′ sym-

metric under the interchange of A and A′, Π
(anti)
AA′ is the projector onto

the antisymmetric subspace, and csym, canti are suitable constants.
Note that

Π
(sym)
AA′ =

1

2
(IAA′ + SAA′) ,

Π
(anti)
AA′ =

1

2
(IAA′ − SAA′) , (14)

where SAA′ is the swap operator, and that the symmetric and an-
tisymmetric subspaces have dimension 1

2 |A| (|A|+ 1) and dimension
1
2 |A| (|A| − 1) respectively.

Even if you are not familiar with group representation theory, you
might regard eq.(13) as obvious. We may write MAA′(U) as a sum of
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two terms, one symmetric and the other antisymmetric under the in-
terchange of A and A′. The expectation of the symmetric part must be
symmetric, and the expectation value of the antisymmetric part must
be antisymmetric. Furthermore, averaging over the unitary group en-
sures that no symmetric state is preferred over any other.

b) To evaluate the constant csym, multiply both sides of eq.(13) by

Π
(sym)
AA′ and take the trace of both sides, thus finding

csym =
|A1|+ |A2|
|A|+ 1

. (15)

c) To evaluate the constant canti, multiply both sides of eq.(13)) by

Π
(anti)
AA′ and take the trace of both sides, thus finding

canti =
|A1| − |A2|
|A| − 1

. (16)

d) Using

cI =
1

2
(csym + canti) , cS =

1

2
(csym − canti) (17)

prove eq.(10.341).


