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Ph 219c/CS 219c

Exercises
Due: Thursday 8 March 2018

4.1 Fault-tolerant error correction by teleportation

a) A destructive fault-tolerant encoded Bell measurement can be done transver-

sally for any stabilizer code. Consider a stabilizer code with length

n and k encoded qubits. Denote the n−k stabilizer generators by
{Mi, i = 1, 2, 3, . . .n−k}, and denote the encoded Pauli operators by

{X̄a, Ȳa, Z̄a, a = 1, 2, 3, . . .k}. If two code blocks A and B are both
encoded using this code, then by an encoded Bell measurement of

encoded qubit a performed on these two blocks we mean a simulta-
neous measurement of the two commuting operators X̄A,a ⊗ X̄B,a and
Z̄A,a ⊗ Z̄B,a.

Denote the Pauli operators acting on the n qubits in the code block by
{Xα, Yα, Zα, α = 1, 2, 3, . . .n}. Suppose that, instead of the encoded

Bell measurement, a Bell measurement is performed bitwise — that is
XA,α ⊗ XB,α and ZA,α ⊗ ZB,α are measured for all α = 1, 2, 3, . . .n.

(Each of these two-qubit Bell measurements can be realized by per-
forming a CNOT gate followed by an X measurement on the CNOT’s

control qubit and a Z measurement on its target qubit.) Explain
how the results of the bitwise Bell measurements can be processed

to infer the outcomes of the ideal encoded Bell measurements for all
a = 1, 2, 3, . . .k.

b) Now suppose that some of the bitwise Bell measurements are faulty (the
recorded value of XA,α ⊗ XB,α, or ZA,α ⊗ ZB,α, or both differs from

the ideal outcome). Suppose that the stabilizer code has distance
d = 2t + 1 so that it can correct t errors. Explain how, if at most t of

the n bitwise Bell measurements are faulty, the outcomes of the ideal
Bell measurements can still be inferred correctly.

c) A particularly efficient scheme for fault-tolerant error correction, which
can be carried out for any stabilizer code, is error correction by tele-

portation:
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First the encoded Bell state
⊗

a |φ̄
+
a 〉BC is prepared and verified, then

encoded Bell measurement is performed on block B and the incoming
data block A, and finally an encoded Pauli operator is applied to

complete the teleportation of the incoming encoded state.

Suppose that the preparation and verification circuit for the encoded

Bell state has the property that if the circuit contains no more than r

faults, then each of its output blocks has no more than r errors. Show

that in that case the circuit for error correction by teleportation is
fault tolerant — that is it has the two properties:

r-good
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= r-good
EC
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s-filter
r-good

EC
ideal

decoder
= s-filter ideal

decoder
(r + s ≤ t)

Here we use “r-good” to indicate an error correction with at most r

faults, and the “s-filter” is the orthogonal projection onto the space

spanned by all states that can be obtained by acting on a codeword
with a Pauli operator of weight no larger than s.
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4.2 Fault-tolerant error correction without ancilla verification

In one version of fault-tolerant error correction discussed in class, the sta-
bilizer generators of a stabilizer code are measured by the cat state method:

first a cat state is prepared and verified, and the cat state is used for the
measurement only if the verification step confirms that the preparation did

not fail badly. In this scheme, one must wait for the outcome of the mea-
surement performed in the verification step before knowing whether the cat

state will be accepted. Having to wait for the measurement to be completed
might be a big disadvantage in a setting where it takes much longer to do a
measurement than the time required to execute a gate.

Fortunately, though, there is an alternative procedure where waiting is
not necessary. In this procedure, instead of being verified before use, the an-

cilla is measured after use. Though an encoded error might propagate from
a badly damaged ancilla to the data, it will be known (later) when this has

occured. The propagation of encoded Pauli operators through subsequent
(Clifford group) gates in the circuit can be simulated efficiently on a classical

computer, and with this information we can infer what the outcomes of the
final measurements at the end of the computation would have been if the

cat state had been prepared properly.
For example, for the [[7,1,3]] quantum code that corrects one error, con-

sider measuring one of the weight-four X-type stabilizer generators, using

the circuit shown here:
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The four-qubit cat state is encoded with four qubit preparations and
three CNOT gates, the ancilla interacts with the data block via four CNOT

gates, the ancilla is decoded with three CNOTs, and then all four ancilla
qubits are measured as shown.

a) To extract the eigenvalue of the stabilizer generator, we are to determine
the eigenvalue of X1X2X3X4, acting on the cat state immediately after
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the cat state interacts with the data block. (Here e.g. X1 denotes

X acting on the first qubit of the cat state, and the tensor product
symbol has been suppressed.). Show that it there are no faults, then

the desired measurement is achieved by the final X2 measurement in
the circuit shown. For this purpose, you may find it useful to recall

the action by conjugation of the CNOT gate on the Pauli operators

CNOT : XI → XX , IX → IX , ZI → ZI , IZ → ZZ ,

where the first qubit is the control qubit and the second qubit is the
target qubit of the CNOT.

b) If there are no faults, what will the measurements of Z1, Z3, and Z4 yield?

(Write down the complete stabilizer of the cat state, and consider how
each stabilizer generator propagates through the CNOT gates.)

c) Faults in the cat state encoder might produce X errors that feed to the
data via the following CNOT gates. In particular, a weight-two X

error that propagates to the data will produce an encoded X̄ error.
What possible weight-two X errors in the cat state could be produced

by a single fault in the cat state encoder? Explain how these weight-
two X errors might arise.

d) If the cat state has a weight-one X error after interacting with the data,
and there are no subsequent faults in the circuit, what are the possible

outcomes of the Z1, Z3, and Z4 measurements? If the cat state has a
weight-two X error that could have arisen from a single fault in the

cat state encoder, what are the possible outcomes of the Z1, Z3, and
Z4 measurements? Do these measurements distinguish weight-two X

errors from X errors of weight one or zero?

e) If the only fault in the circuit occurs during the decoding and measure-
ment of the cat state, what are the possible outcomes for the measure-
ments of Z1, Z3, and Z4? Finally, is this syndrome extraction scheme

fault tolerant? (Can a single fault cause an encoded error?)
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4.3 Fault-tolerant error correction via gauge qubit measurement

Shor’s [[9,1,3]] quantum code has a nice interpretation that can be ap-
preciated by laying out the nine qubits on a 3 × 3 grid:
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The encoded Pauli operator X̄ can be chosen to be the tensor product
of X ’s acting on all the qubits in a row, e.g., X̄ = Xrow−1 = X1X2X3 and

the encoded Pauli operator Z̄ can be chosen to be the tensor product of Z’s
acting on all the qubits in column, e.g., Z̄ = Zcol−1 = Z1Z4Z7. Furthermore,

the tensor product of X ’s on all the qubits in two rows commutes with Z̄

and the tensor product of Z’s on all the qubits in two columns commutes

with X̄. Hence we may take the stabilizer generators of the code to be

Xrow−1Xrow−2 , Xrow−2Xrow−3 ,

Zcol−1Zcol−2 , Zcol−2Zcol−3 ,

which are mutually commuting. Note that the encoded X̄ may be taken to
be any of Xrow−1, Xrow−2, or Xrow−3, as these differ by multiplication by an

element of the stabilizer, and similarly, the encoded Z̄ may be taken to be
any of Zcol−1, Zcol−2, or Zcol−3.

There is a (nonabelian) algebra of Pauli operators that commute with the
encoded operations and with the stabilizer. This algebra includes products

of neighboring X ’s in the same column (e.g. X1X4), products of neighboring
Z’s in the same row (e.g., Z1Z2), and all products of such operators. The
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Pauli operators in this algebra are harmless errors that preserve the stabi-

lizer and have no effect on the encoded qubit. We will refer to the operators
that commute with X̄ and Z̄ , but that are not themselves elements of the

stabilizer, as “gauge-qubit operators” (the terminology comes from an anal-
ogy with e.g. electrodynamics, where a “gauge transformation” has no effect

on physical observables). A basis for the gauge-qubit operators is provided
by, for example, {X1X4, Z1Z3, X2X5, Z2Z3, X4X7, Z7Z9, X5X8, Z8Z9}.

From the perspective of fault tolerance, a particularly nice feature is that
(even though the gauge qubit operators are not mutually commuting) the

values of the outcomes of gauge qubit measurements can be used to infer
the values of the eigenvalues of the stabilizer generators.

a) If gauge qubits can be measured without faults, explain how such mea-
surements can be used to determine the error syndrome, and how the

syndrome determines the appropriate recovery operation.

A procedure for measuring the weight-two gauge qubit operators in (a)

column j and (b) row i is shown here:
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E.g., for j = 1, the procedure (a) measures X1X4, X4X7, and X1X7, and
for i = 1, the procedure (b) measures Z1Z2, Z2Z3, and Z1Z3. Though X1X7

is not independent of the other two observables in the first column, this third
redundant measurement is needed to ensure fault tolerance. Similarly, in (b)

the third measurement in each row ensures fault tolerance.

b) Suppose that the third redundant measurement in each row and column

were omitted. How could a single faulty gate cause an encoded er-
ror? Show that the error correction procedure is fault tolerant (in the

sense that the properties listed in Problem 8.1c are satisfied) when the
redundant measurements are included.
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c) How many locations (qubit preparations, qubit measurements, and CNOT

gates) are contained in one complete cycle of fault-tolerant syndrome
measurement?

4.4 A CNOT gadget constructed from measurements

Verify the following circuit identity:
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Here Mσ represents measurement of the Pauli operator σ, |+〉 is the eigen-
state of X with eigenvalue +1, and σ1, σ2 on the right-hand side of the

equation are single-qubit Pauli operators that depend on the outcomes of
the four measurements in the circuit on the left-hand side. What are σ1

and σ2? Hint: Check that Pauli operators propagate through the circuit as
they do through a CNOT gate:

CNOT : XI → XX , IX → IX , ZI → ZI , IZ → ZZ ,

(where the first qubit is the control qubit and the second qubit is the target

qubit of the CNOT) except for minus signs that depend on the measurement
outcomes, and note that the minus signs can be removed by choosing σ1 and

σ2 appropriately.
Though it is a bit more complicated than the measurement-based CNOT

gadget constructed in class, this gadget has an advantageous feature: the
Pauli operators that are measured nondestructively are Z-type operators.

In some experimental settings these are easier to measure than operators
that are X-type or of mixed type.


