Go to home page for
Ph219/CS219 in past years.
Course description: This course covers quantum information theory, quantum algorithms, and quantum error correction.
Class meetings: Monday and Wednesday 2:30-3:55 in 269 Lauritsen.
Instructor:
John Preskill,
206 Annenberg, X-6691, email: preskill(at)caltech(dot)edu
Teaching assistant:
Charles Xu, email: cxu3(at)caltech(dot)edu
Office hours: Tuesdays 4:00--5:30pm in 238 Annenberg (during weeks when
problems are due)
Lectures and references:
The primary reference for most of the lectures will be these lecture
notes (JP). Other useful books are Quantum
Computation and Quantum Information
by Nielsen and Chuang (NC), Classical
and Quantum Computation by Kitaev, Shen, and Vyalyi (KSV), Quantum
Computing Since Democritus by Aaronson, and Quantum
Information Theory by Wilde.
Other recommended lecture notes: John Watrous, Umesh
Vazirani, Andrew
Childs, Scott Aaronson
Course outline for winter term:
(Professor Kitaev lectured for the first
five weeks of the term.)
Good references on quantum error correction are this review by Gottesman, and this review by Terhal.
See also JP Chapter 7.
Handwritten
lecture notes on toric code recovery,
fault-tolerant recovery, fault-tolerant gates
Lecture 1 (Feb 13): Fault-tolerant quantum memory
Lecture 2 (Feb 15): Fault-tolerant quantum computing
Lecture 3 (Feb 22): Measurement-based quantum computing and cluster states
Notes
on cluster states
Lecture 4 (Feb 29): Color codes – Alex Kubica and
Tomas Jochym-O’Connor
Notes
on color codes
Lecture 5 (Mar 1): Cluster states and SPT phases
Lecture 6 (Mar 6): Bounds on [[n,k,d]] for local
stabilizer codes
Lecture 7 (Mar 8): Topological codes and the Clifford hierarchy
Course outline for spring term:
The main topics covered will be topological quantum computing (JP Chapter 9) and quantum Shannon
theory (JP Chapter 10). If time allows, we’ll cover an additional topic at the
end of term --- perhaps quantum simulation of physical systems.
Lecture 1 (April 3): Indistinguishable particles, abelian anyons, braid group
Lecture 2 (April 5): Topological degeneracy, toric
code accuracy threshold
Lecture 3 (April 10): Quantum double models
Lecture 4 (April 12): Computing with quantum-double anyons
Lecture 5 (April 17): Anyon models, F and R matrices
(Alex)
Lecture 6 (April 19): Simulating anyons with a
quantum computer (Tomas)
Lecture 7 (April 24): Universal computation with Fibonacci anyons.
Lecture 8 (April 26): Ising anyons
and Majorana modes
Lecture 9 (May 1): Shannon entropy and classical compression (Tomas)
Lecture 10 (May 3): Classical noisy channel coding theorem (Tomas)
Homework assignments:
All students taking the course for credit are required to do the homework.
Problem Set 3. Quantum codes and fault tolerance. Due Thursday 9 March 2017
Problem Set 4. Fibonacci anyons. Due Thursday 4 May 2017
Problem Set 5. Von Neumann entropy. Due Thursday 25 May 2017