Ph 219b/CS 219b

Exercises
Due: Friday 3 February 2006

5.1 Universal quantum gates I

In this exercise and the two that follow, we will establish that several
simple sets of gates are universal for quantum computation.

The Hadamard transformation H is the single-qubit gate that acts in
the standard basis {|0), |1)} as

T T

in quantum circuit notation, we denote the Hadamard gate as

H

The single qubit phase gate P acts in the standard basis as

(7).

P

and is denoted

A two-qubit controlled phase gate A(P) acts in the standard basis
{]00), 01), |10),|11)} as the diagonal 4 x 4 matrix

A(P) = diag(1, 1,1, 1) (3)

and can be denoted

e

P




Despite this misleading notation, the gate A(P) actually acts symmet-
rically on the two qubits:

? P
P :

We will see that the two gates H and A(P) comprise a universal gate
set — any unitary transformation can be approximated to arbitrary
accuracy by a quantum circuit built out of these gates.

a) Consider the two-qubit unitary transformations U; and Uy defined
by quantum circuits

— H T H
U1 =
— P
and
— P
U2 = l
— H . H

Let |ab) denote the element of the standard basis where a labels
the upper qubit in the circuit diagram and b labels the lower
qubit. Write out U7 and U, as 4 X 4 matrices in the standard
basis. Show that U7 and U4 both act trivially on the states
1
V3
b) Thus U; and U act nontrivially only in the two-dimensional space
spanned by

1 1
{ﬁaow—uo»,%amw|1o>—2|11>>}. (5)

Show that, expressed in this basis, they are
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|00), (|01) +1]10) + |11)) . (4)

(6)

and
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¢) Now express the action of U; and Uy on this two-dimensional
subspace in the form

U1:ﬂ<%—i%ﬁ1-5> , (3)

and

U2:ﬂ<%—i%ﬁg-&> : (9)

What are the unit vectors nq and ng?

d) Consider the transformation U5 U, (Note that U, ! can also be
constructed from the gates H and A(P).) Show that it per-
forms a rotation with half-angle /2 in the two-dimensional space
spanned by the basis eq. (5), where cos(0/2) = 1/4.
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We have now seen how to compose our fundamental quantum gates to
perform, in a two-dimensional subspace of the four-dimensional Hilbert
space of two qubits, a rotation with cos(6/2) = 1/4. In this exercise, we
will show that this angle is not a rational multiple of . Equivalently,
we will show that

92 = cos(0/2) + isin(0/2) = i (1 + Z\/B) (10)

is not a root of unity: there is not finite integer power n such that
( ei9/2)n - 1.

Recall that a polynomial of degree n is an expression
n
P(z) = Zakznk (11)
k=0

with a, # 0. We say that the polynomial is rational if all of the ax’s
are rational numbers, and that it is monic if a, = 1. A polynomial
is integral if all of the aj’s are integers, and an integral polynomial is
primitive if the greatest common divisor of {ag, a1, ...,a,} is 1.

a) Show that the monic rational polynomial of minimal degree that
has €/2 as a root is

P(z) = 2° — %:n +1. (12)



The property that e/2 is not a root of unity follows from the result

(a) and the

Theorem If a is a root of unity, and P(x) is a monic rational poly-
nomial of minimal degree with P(a) =0, then P(x) is integral.

Since the minimal monic rational polynomial with root €/2 is not
integral, we conclude that €?/2 is not a root of unity. In the rest of

this exercise, we will prove the theorem.

b) By “long division” we can prove that if A(x) and B(x) are rational
polynomials, then there exist rational polynomials Q(z) and R(x)
such that

A(z) = B(z)Q(z) + R(z) , (13)

where the “remainder” R(z) has degree less than the degree of
B(x). Suppose that a” = 1, and that P(z) is a rational polyno-
mial of minimal degree such that P(a) = 0. Show that there is a
rational polynomial Q(z) such that

2" — 1= P(2)Q(z) . (14)

¢) Show that if A(z) and B(x) are both primitive integral polyno-
mials, then so is their product C(z) = A(z)B(x). Hint: If
C(x) = Y, cxa® is not primitive, then there is a prime num-
ber p that divides all of the cx’s. Write A(x) = >, a;2!, and
B(xz) =3, bma™, let a, denote the coefficient of lowest order in
A(z) that is not divisible by p (which must exist if A(x) is prim-
itive), and let by denote the coefficient of lowest order in B(z)
that is not divisible by p. Express the product a,bs in terms of
¢r+s and the other a;’s and b,,’s, and reach a contradiction.

d) Suppose that a monic integral polynomial P(x) can be factored into
a product of two monic rational polynomials, P(x) = A(x)B(z).
Show that A(z) and B(z) are integral. Hint: First note that we
may write A(x) = (1/r)-A(z), and B(z) = (1/s)-B(x), where 7, s
are positive integers, and A(z) and B(z) are primitive integral;
then use (c¢) to show that r = s = 1.

e) Combining (b) and (d), prove the theorem.

What have we shown? Since Uj, LU, is a rotation by an irrational
multiple of 7, the powers of U, U, are dense in a U(1) subgroup.



Similar reasoning shows that U1U 5 1'is a rotation by the same angle
about a different axis, and therefore its powers are dense in another
U(1) subgroup. Products of elements of these two noncommuting U (1)
subgroups are dense in the SU(2) subgroup that contains both U1 and
U,.

Furthermore, products of A(P)U5'U1A(P)~! and A(P)U U5 'A(P)!
are dense in another SU(2), spanned by

1 1

—_(]01) — [10)), —=
{ Z5t0m) - 0y,
Together, these two SU(2) subgroups close on the SU(3) subgroup
that acts on the three-dimensional space orthogonal to |00). Conjugat-
ing this SU(3) by H ® H we obtain another SU(3) acting on the three
dimensional space orthogonal to |+, +), where |+) = %(|0>—|—|1>) The
only subgroup of SU(4) that contains both of these SU(3) subgroups
is SU(4) itself.
Therefore, the circuits constructed from the gate set {H, A(P)} are
dense in SU(4) — we can approximate any two-qubit gate to arbitrary

accuracy, which we know suffices for universal quantum computation.
Whew!

(|01) + |10) _2¢|11>)} . (15)
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We have shown that the gate set {H, A(P)} is universal. Thus any
gate set from which both H and A(P) can be constructed is also
universal. In particular, we can see that {H, P, A%(X)} is a universal
set.

a) The three-qubit controlled-swap gate A(SWAP) swaps its two tar-
get qubits when the control qubit is |1) and acts trivially if the
control qubit is |0). Use the Toffoli gate A%(X) to construct a
circuit for A(SWAP).

b) Use A(SWAP), P, and a constant qubit to construct a circuit for
A(P). Hint: What does the following circuit do?

I I

SWAP SWAP




The Toffoli gate A%(X) is universal for reversible classical compu-
tation. What must be added to realize the full power of quantum
computing? We have just seen that the single-qubit gates H and P,
together with the Toffoli gate, are adequate for reaching any unitary
transformation. But in fact, just H and A%(X) suffice to efficiently
simulate any quantum computation.

Of course, since H and A?(X) are both real orthogonal matrices,
a circuit compose from these gates is necessarily real — there are
complex n-qubit unitaries that cannot be constructed with these tools.
But a 2"-dimensional complex vector space is isomorphic to a 271
dimensional real vector space. A complex vector can be encoded by a
real vector according to

|¢> = Z¢m|$> = |?z> = Z(Re ¢m)|$v 0> + (Im ¢m)|$v 1> ) (16)

xT

and the action of the unitary transformation U can be represented by
a real orthogonal matric Ur defined as

Ur: |z,0)— (ReU)|z)®|0) + (Im U)|z) ® |1)
|z, 1) —» —(Im U)|z) ® [0) + (Re U)|z) @ [1) . (17)

To show that the gate set {H,A?(X)} is “universal,” it suffices to
demonstrate that the real encoding A(P)g of A(P) can be constructed
from A?(X) and H.

c) Verify that A(P)g = A*(X Z).
d) Use A?(X) and H to construct a circuit for A%(X Z).

Thus, the classical Toffoli gate does not need much help to unleash the
power of quantum computing. In fact, any nonclassical single-qubit
gate (one that does not preserve the computational basis), combined
with the Toffoli gate, is sufficient.

5.4 Entanglement of typical bipartite pure states

In our sketchy discussion of the proof of the mother resource inequality,
we used an important property of bipartite entanglement: If ds/dp <
1, then if a pure state of AB is chosen at random, the density operator
of A is likely to be very nearly maximally mixed. The purpose of this
problem is to derive this property.



To begin with, we will calculate the value of (tr p%), where (-) denotes
the average over all pure states {|p)} of AB, and p4 = trp (|¢){p|)-

a) It is convenient to evaluate tr pi using a trick. Imagine introducing
a copy A'B’ of the system AB. Show that

tra pi = trapap [(San © Ipp) (|0) () aB @ o) (@lap)]
(18)
where S44 denotes the swap operator

San |@)a® | Y)ar = [P)a® o) ar (19)

b) We wish to average the expression found in (a) over all pure states
|¢). Rather than go into the details of how such an average is
defined, I will simply assert that

(lp){ela@le){pla) = C Taar (20)

where C is a constant and II44/ denotes the projector onto the
subspace of AA’ that is symmetric under interchange of A and
A’. Eq. (20) can be proved using invariance properties of the
average and some group representation theory, but I hope you
will regard it as obvious. The state being averaged is symmetric,
and the average should not distinguish any symmetric state from
any other symmetric state. Express the constant C' in terms of
the dimension d = d4 = dar.
¢) Use the property 144 = % (44 + Saar) to evaluate the expression
found in (a). Show that
da+d
(tr pi> = ﬁ . (21)
d) Now estimate the average L? distance of p4 from the maximally
mixed density operator %I 4, where || M |ja= VtrMTM. First

show that )

1
———Iul3) < — . 22
(oa- 21k} < o 22

(Hint: Use the obvious property (pa) = é[ A.) Next show
that for any nonnegative function f, it follows from the Cauchy-

Schwarz inequality that (v/f) < \/(f); thus

1 1
<|| pa— gl ||2> < T (23)



e) Finally, estimate the average L' distance of p4 from the maximally
mixed density operator, where || M |y= tr VMTM. Use the
Cauchy-Schwarz inequality to show that || M ||;< Vd || M ||z, if
M is a d x d matrix, and that therefore

1 da
<|| pa— g-la ||1> <\ (24)

It follows from (d) that the average entanglement entropy of A and B
is close to maximal for d4/dp < 1: (H(A)) > logyda — da/2dpn2,
though you are not asked to prove this bound. Thus, if for example
A is 50 qubits and B is 100 qubits, the typical entropy deviates from
maximal by only about 2759 ~ 10715,



