
1

Ph 219c/CS 219c

Exercises
Due: Tuesday 6 February 2007

5.1 Correcting a shift

Operators acting on a d-level quantum system (or qudit) can be ex-
panded in terms of the d2 “Pauli operators”

XaZb, a, b = 0, 1, 2, . . . , d− 1 . (1)

Here X and Z are generalizations of the Pauli matrices σx and σz ,
which act in a particular basis {|j〉, j = 0, 1, 2, . . . , d− 1} according to

X : |j〉 → |j + 1 (mod d)〉 ,
Z : |j〉 → ωj |j〉 , (2)

where ω = exp(2πi/d). Note that it follows that

ZX = ωXZ . (3)

An “error superoperator” acting on a qudit can be expanded in this
basis.

Suppose that errors with |a|, |b| small compared to d are common, but
errors with large |a| and |b| are rare. We wish to design a quantum
error-correcting code that corrects these small “shifts” in the ampli-
tude or phase of the qudit.

For d = nr1r2 (where n, r1 and r2 are positive integers), consider the
stabilizer generators

MX = Xnr1 , MZ = Znr2 . (4)

a) Verify that MX and MZ commute.

b) Find the commutation relations of MX with XaZb and of MZ with
XaZb.
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c) Find two generators of the normalizer group of the code (the group
of Pauli operators that commute with the stabilizer). What com-
mutation relations are satisfied by these normalizer generators?
What is the dimension of the code subspace?

d) How large an amplitude shift |a| and phase shift |b| can be corrected
by this code?

5.2 Polynomial CSS codes

Consider a pit that takes the p possible values {0, 1, 2, . . . , p−1}, where
p is prime. The set {0, 1, 2, . . . , p− 1} can be regarded as a finite field
Fp with addition and multiplication defined modulo p; Fp is a field
because each nonzero element has a multiplicative inverse.

In this exercise, you will study the properties of a family of quantum
codes for qupits (p-level quantum systems). These quantum codes are
related to linear classical codes that are vector spaces over the field
Fp. We will refer to the quantum codes as polynomial CSS codes.

Let x0, x1, . . .xn−1 (where n ≤ p) be specified distinct elements of Fp,
and consider a classical code C1 that contains all strings of n elements
of Fp of the form

(
f(xn−1), f(xn−2) . . . , f(x2), f(x1), f(x0)

)
, (5)

where f(x) is a polynomial of degree at most m with coefficients in
Fp. (The code depends on how the elements x0, x1, . . .xn−1 of Fp are
chosen. Different codewords within the code are obtained by varying
the polynomial f .)

a) Show that C1 is a vector space over Fp.

b) The weight of a vector in Fn
p is the number of nonzero components

of the vector, and the distance of a linear code is the minimum
weight of a nonzero vector in the code. Show that the distance
d1 of C1 satisfies

d1 ≥ n−m . (6)

[Hint: A nonzero polynomial f(x) of degree m has at most m
zeros over the field Fp.]

Now let C2 be the subcode of C1 such that f(x) has degree at most
m− 1.
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c) Show that C2 is a vector space over Fp, and a subspace of C1.

d) Suppose that {z1, z2, . . . , zm} are distinct elements of Fp, and that
{y1, y2, . . . , ym} are arbitrary elements of Fp (not necessarily dis-
tinct). Show that there is a polynomial f(x) of degree less than
m such that

f(z1) = y1 ,

f(z2) = y2 ,

·
·

f(zm) = ym . (7)

[Hint: It is easy to construct such a polynomial f(x) explicitly.]

e) The code C⊥
2 dual to C2 contains all vectors in Fn

p that are or-
thogonal to all vectors in C2. Show that the distance d2 of C⊥

2

satisfies
d2 ≥ m+ 1 . (8)

[Hint: Choose any m components of the n-component C2 code-
words, and consider the corresponding projection of C2 into Fm

p .
Using the result of (d), show that the image of C2 under this
projection is all of Fm

p . Conclude that any vector orthogonal to
all vectors in C2 must have weight at least m+ 1.]

f) Now consider a quantum error-correcting code of the CSS type,
based on the codes C1 and C2 ⊂ C1. We can choose a basis for
the code space such that each element of the basis is a uniform su-
perposition of all C1 codewords that belong to the same C2 coset.
What is the number of encoded qupits? (How many distinct C2

cosets are contained in C1?)

g) A CSS code can correct t errors if d1 ≥ 2t + 1 and d2 ≥ 2t + 1.
Explain how to construct polynomial CSS codes that encode one
qupit, correct t errors, and have block size 4t+1. For what values
of p can such codes be constructed?
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5.3 Decoherence-free subspaces and noiseless subsystems.

Suppose that the noise that afflicts a set of n qubits can be expanded
in terms of error operators in the set E = {Ea}. We say that the code
C ⊆ Hn−qubit is a decoherence-free subspace (DFS) for the errors in E
if C is an eigenspace of each operator Ea ∈ E — that is for each error
operator Ea there is a corresponding λa such that Ea|ψ〉 = λa|ψ〉 for
all |ψ〉 ∈ C. Then the errors in E do not damage any state |ψ〉 ∈ C.

a) Suppose that two qubits are both subjected to “phase noise” in-
duced by a magnetic field in the z direction that is homogeneous
in space but that fluctuates in time. In this case the only nontriv-
ial error operator in the set E is Z1 + Z2 (where Z1 denotes the
Pauli operator Z acting on qubit 1 and Z2 denotes Z acting on
qubit 2), because the phase noise always acts on the two qubits
collectively. Find basis states for a two-dimensional DFS that is
invulnerable to this phase noise.

The single-qubit Pauli matrices {I,X, Y,Z} are Hermitian operators
defined by the relations

X2 = Y 2 = Z2 = I , XY = −Y X = iZ . (9)

Let L(Hn−qubit) denote the space of linear operators acting on the
Hilbert space of n-qubits, and suppose that noise acting on Hn−qubit

can be expanded in terms of error operators in the set E . Suppose that
X̄, Ȳ , Z̄ are Hermitian operators in L(Hn−qubit) that commute with
all the operators in E and that satisfy the relations eq. (9). Then we
may say that {I, X̄, Ȳ , Z̄} are the logical Pauli operators that define a
(one-qubit) noiseless subsystem (NS) for the errors in E , embedded in
L(Hn−qubit). This subsystem is unaffected by the noise.

b) Suppose that noise acting on two qubits is described by error oper-
ators E = {I1 ⊗ I2, X1 ⊗X2}; when the noise acts nontrivially it
flips both of the qubits at once. Find a one-qubit NS for E — that
is, express {X̄, Ȳ , Z̄} in terms of the two-qubit Pauli operators.

c) Now consider three qubits, and suppose that the noise applies ei-
ther “bit flips” or “phase flips” to pairs of qubits. That is, the
nontrivial elements of E are

X1 ⊗X2 ⊗ I3 , I1 ⊗X2 ⊗X3 , X1 ⊗ I2 ⊗X3 , (10)
Z1 ⊗ Z2 ⊗ I3 , I1 ⊗ Z2 ⊗ Z3 , Z1 ⊗ I2 ⊗ Z3 . (11)
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Again, construct a single-qubit NS for E by exhibiting {X̄, Ȳ , Z̄}.

5.4 Good CSS codes

In class we derived the quantum Gilbert-Varshamov bound:

|E(2)| − 1 <
22n − 1

2n+k − 2n−k
. (12)

This is a sufficient condition for the existence of a (possibly degenerate)
binary stabilizer code that can correct all Pauli operators in a set
E ; here |E(2)| denotes the number of distinct Pauli operators of the
form E

†
aEb, where Ea, Eb ∈ E . One consequence of this bound is that

there exist “good” [[n, k, d = 2t + 1]] stabilizer codes that achieve an
asymptotic rate R = k/n = 1 −H2(2t/n) − (2t/n) log2 3.

The purpose of this exercise is to show that good Calderbank-Shor-
Steane (CSS) codes exist.

a) Derive a quantum Gilbert-Varshamov bound for CSS codes. De-
note by EX the set of X-type errors that the code can correct
(those that can be expressed as a tensor product of X ’s and I ’s)
and denote by EZ the set of Z-type errors that the code can cor-
rect (those that can be expressed as a tensor product of Z’s and
I ’s). Denote by EX(2) the set of {E†

aEb} where Ea, Eb ∈ EX , and
similarly for EZ(2). The quantum Gilbert-Varshamov bound for
CSS codes is a sufficient condition for the existence of a CSS code
with nX stabilizer generators of the X type and nZ stabilizer gen-
erators of the Z type that can correct all errors in EX and EZ ,
expressed as an inequality involving nX , nZ , |EX(2)| and |EZ(2)|.

b) Use the quantum Gilbert-Varshamov bound for CSS codes to show
the existence of CSS codes that achieve the asymptotic rate R =
k/n = 1 − H2(2tX/n) − H2(2tZ/n), where the code can correct
tX X errors and tZ Z errors.


