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Ph 219b/CS 219b

Exercises

Due: Wednesday 11 February 2009

5.1 The peak in the Fourier transform

In the period finding algorithm we prepared the “periodic state”

1√
A

A−1
∑

j=0

|x0 + jr〉 , (1)

where A is the least integer greater than N/r; then we performed the
quantum Fourier transform with base N and measured. The proba-

bility distribution governing the measurement outcome y is

Prob(y) =
1

NA

(

sin2 πAyr/N

sin2 πyr/N

)

. (2)

Letting δ denote the deviation of the rational number y/N from the
nearest integer multiple of 1/r,

δ =
y

N
− k

r
, (3)

this probability may be expressed as

Prob(y) =
1

NA

(

sin2 πArδ

sin2 πrδ

)

. (4)

Note that, since there is a multiple of 1/r within distance 1/2r from
any real number, we may assume that −1/2r ≤ δ ≤ 1/2r.

a) Show that

Prob(y) ≤ 1

4NAr2δ2
. (5)

b) Let us say that the measurement outcome y is “δ-bad” if the dis-

tance to the nearest multiple of 1/r is larger than δ. Show that
the probability Prob(> δ) of a δ-bad outcome satisfies

Prob(> δ) <
1

Nδ
. (6)



2

Thus, for fixed δ, the probability of a δ-bad outcome is small for N >>

1/δ.

5.2 Estimating the trace of a unitary matrix

Recall that using an oracle that applies the conditional unitary Λ(U),

Λ(U) : |0〉 ⊗ |ψ〉 7→ |0〉 ⊗ |ψ〉 ,
|1〉 ⊗ |ψ〉 7→ |1〉 ⊗ U |ψ〉 (7)

(where U is a unitary transformation acting on n qubits), we can
measure the eigenvalues of U . If the state |ψ〉 is the eigenstate |λ〉 of

U with eigenvalue λ = exp(2πiφ), then by querying the oracle k times,
we can determine φ to accuracy O(1/

√
k).

But suppose that we replace the pure state |ψ〉 in eq. (7) by the max-
imally mixed state of n qubits, ρ = I/2n.

a) Show that, with k queries, we can estimate both the real part and

the imaginary part of tr (U) /2n, the normalized trace of U , to
accuracy O(1/

√
k).

b) Given a polynomial-size quantum circuit, the problem of estimat-
ing to fixed accuracy the normalized trace of the unitary trans-

formation realized by the circuit is believed to be a hard problem
classically. Explain how this problem can be solved efficiently
with a quantum computer.

The initial state needed for each query consists of one qubit in the pure
state |0〉 and n qubits in the maximally mixed state. Surprisingly,

then, the initial state of the computer that we require to run this
(apparently) powerful quantum algorithm contains only a constant

number of “clean” qubits, and O(n) very noisy qubits.

5.3 A generalization of Simon’s problem

Simon’s problem is a hidden subgroup problem with G = Zn
2 and

H = Z2 = {0, a}. Consider instead the case where H = Zk
2 , with gen-

erator set {ai, i = 1, 2, 3, . . . , k}. That is, suppose an oracle evaluates

a function
f : {0, 1}n → {0, 1}n−k , (8)

where we are promised that f is 2k-to-1 such that

f(x) = f(x⊕ ai) (9)
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for i = 1, 2, 3, . . . , k (here ⊕ denotes bitwise addition modulo 2). Since

the number of cosets of H in G is smaller, we can expect that the
hidden subgroup is easier to find for this problem than in Simon’s

(k = 1) case.

Find an algorithm using n − k quantum queries that identifies the k
generators ofH , and show that the success probability of the algorithm

is greater than 1/4.

5.4 Query complexity of non-abelian hidden subgroup problems

We have seen that there is an efficient quantum algorithm that solves
the hidden subgroup problem for any finitely generated abelian group.

What about non-abelian groups? The purpose of this exercise is to
show that for any finite group G, the hidden subgroup problem can

be solved with polylog(|G|) queries to the oracle, an exponential im-
provement over the best classical algorithm.

The oracle evaluates a function

f : G→ X , (10)

from the group G to a set X , that is constant and distinct on the

cosets of a subgroup H ≤ G. The problem is to identify H . The
input register contains at least log |G| qubits (|G| denotes the order

of G, the number of elements that it contains), and there are basis
states {|g〉, g ∈ G} that can be identified with group elements, such

that 〈g′|g〉 = 0 for g 6= g′. We can query the oracle with a uniform
superposition of all group elements, and so prepare the state

1
√

|G|
∑

g∈G

|g〉 ⊗ |f(g)〉 . (11)

By measuring the output register, we prepare the input register in a

randomly selected “coset state” |gH〉, a uniform superposition of the
elements of the coset:

|gH〉 ≡ 1
√

|H |
∑

h∈H

|gh〉 . (12)

Distinct cosets of H are disjoint, so the coset states corresponding to
two distinct cosets are orthogonal.
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a) Note that if H and H ′ are two subgroups of G, then their intersec-

tion H ∩H ′ is also a subgroup of G. Show that if the intersection
of cosets g′H ′∩gH is not empty, then it contains |H∩H ′| elements

of G.

b) Recall that if H ′ ≤ H , then |H ′| divides |H |. Let PH denote the

orthogonal projection onto the linear span of the coset states
{|gH〉, g ∈ G}. Show that

‖PH ′|gH〉‖2 =
|H ∩H ′|

|H ′| . (13)

Conclude that PH ′ |gH〉 = |gH〉 forH ′ ≤ H , and that forH ′ 6≤ H ,

‖PH ′ |gH〉‖ ≤ 1√
2
. (14)

With k queries we can prepare a tensor product of randomly selected

coset states
|ψ〉 = |g1H〉 ⊗ |g2H〉 ⊗ · · · ⊗ |gkH〉 . (15)

Let P
(k)
H ≡ P⊗k

H denote the orthogonal projector onto the linear span

V
(k)
H of all such product states. Note that for H ′ 6≤ H ,

‖P (k)
H ′ |ψ〉‖ ≤

1

2k/2
. (16)

Thus if the actual hidden subgroup is H , and we make an orthog-

onal measurement M
(k)
H ′ that projects onto either V

(k)
H ′ (the positive

outcome) or its orthogonal complement V
(k)⊥
H ′ (the negative outcome),

then we obtain the positive outcome with probability one for H ′ ≤ H ,

and we obtain the positive outcome with probability no greater than
2−k for H ′ 6≤ H .

We can make a list H1, H2 . . . , HR of the candidate hidden subgroups
starting with the largest subgroups, such that no Hr on the list is a

subgroup of another Hs for s > r; then we perform a series of tests
to identify the hidden subgroup by first performing the measurement

M
(k)
H1

, then M
(k)
H2

, continuing until a positive outcome is obtained for
the first time. The first H ′ for which the measurement yields a positive

outcome is identified as the hidden subgroup.

To check that this algorithm really works, we need to verify that the

measurements that yield negative outcomes do not disturb the state
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|ψ〉 very much. If the actually hidden subgroup is Hr (the rth one

listed), then the probability that the algorithm successfully identifies
Hr is

Psuccess = ‖PHr

(

I − PHr−1

) (

I − PHr−2

)

· · · (I − PH1
) |ψ〉‖2 (17)

c) Note that

‖A|ϕ〉 −A(I −B)|ϕ〉‖ = ‖AB|ϕ〉‖ ≤ ‖B|ϕ〉‖ (18)

for ‖A‖sup ≤ 1; applying eq. (18) repeatedly r−1 times, conclude
that

Psuccess ≥
(

1− r − 1

2k/2

)2

. (19)

We see that the algorithm has constant success probability for k =

O(logR), where R is the number of candidates for the hidden sub-
group. In fact, since any subgroup of G can be generated by a set of

at most n = log2 |G| elements of G (you are not asked to prove this),
and there are fewer than |G|n ways to choose n elements of |G|, the

number of subgroups of G (and hence R) is less than 2n2

. Therefore
O(log2 |G|) queries suffice to solve the hidden subgroup problem.

However . . . in contrast to the solution to the abelian hidden subgroup

problem, our algorithm runs in exponential time, because we may have
to perform R measurements after the queries are completed. So far,

polynomial time (in log |G|) algorithms that solve the hidden subgroup
problem for non-abelian G are known in only a few special cases.


