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4
Quantum Entanglement

4.1 Nonseparability of EPR pairs

4.1.1 Hidden quantum information

The deep ways that quantum information differs from classical informa-
tion involve the properties, implications, and uses of quantum entangle-

ment. Recall from §2.4.1 that a bipartite pure state is entangled if its
Schmidt number is greater than one. Entangled states are interesting
because they exhibit correlations that have no classical analog. We will
study these correlations in this chapter.

Recall, for example, the maximally entangled state of two qubits (or
EPR pair) defined in §3.4.1:

|φ+〉AB =
1√
2

(|00〉AB + |11〉AB) . (4.1)

“Maximally entangled” means that when we trace over qubit B to find
the density operator ρA of qubit A, we obtain a multiple of the identity
operator

ρA = trB(|φ+〉〈φ+|) =
1

2
IA , (4.2)

(and similarly ρB = 1
2IB). This means that if we measure spin A along

any axis, the result is completely random — we find spin up with proba-
bility 1/2 and spin down with probability 1/2. Therefore, if we perform
any local measurement of A or B, we acquire no information about the
preparation of the state, instead we merely generate a random bit. This
situation contrasts sharply with case of a single qubit in a pure state;
there we can store a bit by preparing, say, either | ↑n̂〉 or | ↓n̂〉, and we
can recover that bit reliably by measuring along the n̂-axis. With two

4



4.1 Nonseparability of EPR pairs 5

qubits, we ought to be able to store two bits, but in the state |φ+〉AB this
information is hidden; at least, we can’t acquire it by measuring A or B.

In fact, |φ+〉 is one member of a basis of four mutually orthogonal states
for the two qubits, all of which are maximally entangled — the basis

|φ±〉 =
1√
2
(|00〉 ± |11〉) ,

|ψ±〉 =
1√
2
(|01〉 ± |10〉) , (4.3)

introduced in §3.4.1. Imagine that Alice and Bob play a game with Char-
lie. Charlie prepares one of these four states, thus encoding two bits in
the state of the two-qubit system. One bit is the parity bit (|φ〉 or |ψ〉):
are the two spins aligned or antialigned? The other is the phase bit (+ or
−): what superposition was chosen of the two states of like parity. Then
Charlie sends qubit A to Alice and qubit B to Bob. To win the game,
Alice (or Bob) has to identify which of the four states Charlie prepared.

Of course, if Alice and Bob bring their qubits together, they can iden-
tify the state by performing an orthogonal measurement that projects
onto the {|φ+〉, |φ−〉, |ψ+〉, |ψ−〉} basis. But suppose that Alice and Bob
are in different cities, and that they are unable to communicate at all.
Acting locally, neither Alice nor Bob can collect any information about
the identity of the state.

What they can do locally is manipulate this information. Alice may
apply σ3 to qubit A, flipping the relative phase of |0〉A and |1〉A. This
action flips the phase bit stored in the entangled state:

|φ+〉 ↔ |φ−〉 ,
|ψ+〉 ↔ |ψ−〉 . (4.4)

On the other hand, she can apply σ1, which flips her spin (|0〉A ↔ |1〉A),
and also flips the parity bit of the entangled state:

|φ+〉 ↔ |ψ+〉 ,
|φ−〉 ↔ −|ψ−〉 . (4.5)

Bob can manipulate the entangled state similarly. In fact, as we discussed
in §2.4, either Alice or Bob can perform a local unitary transformation
that changes one maximally entangled state to any other maximally en-
tangled state.∗ What their local unitary transformations cannot do is alter

∗ But of course, this does not suffice to perform an arbitrary unitary transformation on
the four-dimensional space HA ⊗HB, which contains states that are not maximally
entangled. The maximally entangled states are not a subspace — a superposition of
maximally entangled states typically is not maximally entangled.
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ρA = ρB = 1
2I — the information they are manipulating is information

that neither one can read.

But now suppose that Alice and Bob are able to exchange (classical)
messages about their measurement outcomes; together, then, they can
learn about how their measurements are correlated. The entangled basis
states are conveniently characterized as the simultaneous eigenstates of
two commuting observables:

σ
(A)
1 ⊗ σ

(B)
1 ,

σ
(A)
3 ⊗ σ

(B)
3 ; (4.6)

the eigenvalue of σ
(A)
3 ⊗ σ

(B)
3 is the parity bit, and the eigenvalue of

σ
(A)
1 ⊗σ

(B)
1 is the phase bit. Since these operators commute, they can in

principle be measured simultaneously. But they cannot be measured si-
multaneously if Alice and Bob perform localized measurements. Alice and
Bob could both choose to measure their spins along the z-axis, preparing

a simultaneous eigenstate of σ
(A)
3 and σ

(B)
3 . Since σ

(A)
3 and σ

(B)
3 both

commute with the parity operator σ
(A)
3 ⊗σ

(B)
3 , their orthogonal measure-

ments do not disturb the parity bit, and they can combine their results

to infer the parity bit. But σ
(A)
3 and σ

(B)
3 do not commute with phase

operator σ
(A)
1 ⊗ σ

(B)
1 , so their measurement disturbs the phase bit. On

the other hand, they could both choose to measure their spins along the
x-axis; then they would learn the phase bit at the cost of disturbing the
parity bit. But they can’t have it both ways. To have hope of acquiring
the parity bit without disturbing the phase bit, they would need to learn

about the product σ
(A)
3 ⊗ σ

(B)
3 without finding out anything about σ

(A)
3

and σ
(B)
3 separately. That cannot be done locally.

Now let us bring Alice and Bob together, so that they can operate on
their qubits jointly. How might they acquire both the parity bit and the
phase bit of their pair? By applying an appropriate unitary transforma-
tion, they can rotate the entangled basis {|φ±〉, |ψ±〉} to the unentan-
gled basis {|00〉, |01〉, |10〉, |11〉}. Then they can measure qubits A and
B separately to acquire the bits they seek. How is this transformation
constructed?

This is a good time to introduce notation that will be used heavily
in later chapters, the quantum circuit notation. Qubits are denoted by
horizontal lines, and the single-qubit unitary transformation U is denoted:

U
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A particular single-qubit unitary we will find useful is the Hadamard

transform

H =
1√
2

(

1 1
1 −1

)

=
1√
2
(σ1 + σ3) , (4.7)

which has the properties

H2 = I , (4.8)

and

Hσ1H = σ3 ,

Hσ3H = σ1 . (4.9)

(We can envision H (up to an overall phase) as a θ = π rotation about
the axis n̂ = 1√

2
(n̂1 + n̂3) that rotates x̂ to ẑ and vice-versa; we have

U (n̂, θ) = I cos
θ

2
+ in̂ · ~σ sin

θ

2
= i

1√
2
(σ1 + σ3) = iH .)

(4.10)

Also useful is the two-qubit transformation known as the reversible XOR
or controlled-NOT transformation; it acts as

CNOT : |a, b〉 → |a, a⊕ b〉 , (4.11)

on the basis states a, b = 0, 1, where a ⊕ b denotes addition modulo 2.
The CNOT is denoted:

a

b

w

�
��

a⊕ b

a

Thus this transformation flips the second bit if the first is 1, and acts
trivially if the first bit is 0; it has the property

(CNOT)2 = I ⊗ I . (4.12)

We call a the control (or source) bit of the CNOT, and b the target bit.
By composing these “primitive” transformations, or quantum gates, we

can build other unitary transformations. For example, the “circuit”

H u

i



8 4 Quantum Entanglement

(to be read from left to right) represents the product of H applied to
the first qubit followed by CNOT with the first bit as the source and
the second bit as the target. It is straightforward to see that this circuit
transforms the standard basis to the entangled basis,

|00〉 → 1√
2
(|0〉+ |1〉)|0〉 → |φ+〉,

|01〉 → 1√
2
(|0〉+ |1〉)|1〉 → |ψ+〉,

|10〉 → 1√
2
(|0〉 − |1〉)|0〉 → |φ−〉,

|11〉 → 1√
2
(|0〉 − |1〉)|1〉 → |ψ−〉, (4.13)

so that the first bit becomes the phase bit in the entangled basis, and the
second bit becomes the parity bit.

Similarly, we can invert the transformation by running the circuit back-
wards (since both CNOT and H square to the identity); if we apply the
inverted circuit to an entangled state, and then measure both bits, we
can learn the value of both the phase bit and the parity bit.

Of course, H acts on only one of the qubits; the “nonlocal” part of
our circuit is the controlled-NOT gate — this is the operation that estab-
lishes or removes entanglement. If we could only perform an “interstellar
CNOT,” we would be able to create entanglement among distantly sep-
arated pairs, or extract the information encoded in entanglement. But
we can’t. To do its job, the CNOT gate must act on its target without
revealing the value of its source. Local operations and classical commu-
nication will not suffice.

4.1.2 Einstein locality and hidden variables

Einstein was disturbed by quantum entanglement. Eventually, he along
with Podolsky and Rosen (EPR) sharpened their discomfort into what
they regarded as a paradox. As later reinterpreted by Bohm, the situa-
tion they described is really the same as that discussed in §2.5.3. Given
a maximally entangled state of two qubits shared by Alice and Bob, Al-
ice can choose one of several possible measurements to perform on her
spin that will realize different possible ensemble interpretations of Bob’s
density matrix; for example, she can prepare either σ1 or σ3 eigenstates.

We have seen that Alice and Bob are unable to exploit this phenomenon
for faster-than-light communication. Einstein knew this but he was still
dissatisfied. He felt that in order to be considered a complete description
of physical reality a theory should meet a stronger criterion, that might
be called Einstein locality (also sometimes known as local realism):
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Suppose that A and B are spacelike separated systems. Then in a
complete description of physical reality an action performed on system
A must not modify the description of system B.

But if A and B are entangled, a measurement of A is performed and a
particular outcome is known to have been obtained, then the density ma-
trix of B does change. Therefore, by Einstein’s criterion, the description
of a quantum system by a wavefunction or density operator cannot be
considered complete.

Einstein seemed to envision a more complete description that would
remove the indeterminacy of quantum mechanics. A class of theories with
this feature are called local hidden-variable theories. In a hidden-variable
theory, measurement is actually fundamentally deterministic, but appears
to be probabilistic because some degrees of freedom are not precisely
known. For example, perhaps when a spin is prepared in what quantum
theory would describe as the pure state | ↑ẑ〉, there is actually a deeper
theory in which the state prepared is parametrized as (ẑ, λ) where λ (0 ≤
λ ≤ 1) is the hidden variable. Suppose that with present-day experimental
technique, we have no control over λ, so when we prepare the spin state,
λ might take any value — the probability distribution governing its value
is uniform on the unit interval.

Now suppose that when we measure the spin along an axis n̂ rotated
by θ from the ẑ axis, the outcome will be

| ↑n̂〉 , for 0 ≤ λ ≤ cos2
θ

2
,

| ↓n̂〉 , for cos2
θ

2
< λ ≤ 1 . (4.14)

If we know λ, the outcome is deterministic, but if λ is completely un-
known, then the probability distribution governing the measurement will
agree with the predictions of quantum theory. In a hidden-variable the-
ory, the randomness of the measurement outcome is not intrinsic; rather,
it results from ignorance — our description of the system is not the most
complete possible description.

Now, what about entangled states? When we say that a hidden-variable
theory is local, we mean that it satisfies the Einstein locality constraint.
A measurement of A does not modify the values of the variables that
govern the measurements of B. Rather, when Alice measures her half of
an entangled state that she shares with Bob, she gains information about
the values of the hidden variables, sharpening her ability to predict what
Bob will find when he measures the other half. This seems to be what
Einstein had in mind when he envisioned a more complete description.
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4.2 The Bell inequality

4.2.1 Three quantum coins

Is a local hidden-variable theory merely a reformulation of quantum me-
chanics, or is it a testable hypothesis? John Bell’s fruitful idea was to test
Einstein locality by considering the quantitative properties of the correla-
tions between measurement outcomes obtained by two parties, Alice and
Bob, who share an entangled state. Let us consider an example of the
sort of correlations that Alice and Bob would like to explain.

The system that Alice and Bob are studying might be described this
way: Alice, in Pasadena, has in her possession three coins laid out on a
table, labeled 1, 2, 3. Each coin has either its heads (H) or tails (T ) side
facing up, but it is hidden under an opaque cover, so that Alice is not able
to tell whether it is an H or a T . Alice can uncover any one of the three
coins, and so learn its value (H or T ). However, as soon as that one coin
is uncovered, the other two covered coins instantly disappear in a puff of
smoke, and Alice never gets an opportunity to uncover the other coins.
She has many copies of the three-coin set, and eventually she learns that,
no matter which coin she exposes, she is just as likely to find an H as a
T . Bob, in Chicago, has a similar set of coins, also labeled 1, 2, 3. He too
finds that each one of his coins, when revealed, is as likely to be an H as
a T .

In fact, Alice and Bob have many identical copies of their shared set
of coins, so they conduct an extensive series of experiments to investigate
how their coin sets are correlated with one another. They quickly make
a remarkable discovery: Whenever Alice and Bob uncover coins with the
same label (whether 1, 2, or 3), they always find coins with the same value
— either both are H or both are T . They conduct a million trials, just
to be sure, and it works every single time! Their coin sets are perfectly
correlated.

Alice and Bob suspect that they have discovered something important,
and they frequently talk on the phone to brainstorm about the implica-
tions of their results. One day, Alice is in an especially reflective mood:

Alice: You know, Bob, sometimes it’s hard for me to decide which of
the three coins to uncover. I know that if I uncover coin 1, say, then
coins 2 and 3 will disappear, and I’ll never have a chance to find
out the values of those coins. Once, just once, I’d love to be able to
uncover two of the three coins, and find out whether each is an H
or a T . But I’ve tried and it just isn’t possible — there’s no way to
look at one coin and prevent the other from going poof!

Bob: [Long pause] Hey . . . wait a minute Alice, I’ve got an idea . . .
Look, I think there is a way for you to find the value of two of your
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coins, after all! Let’s say you would like to uncover coin 1 and coin
2. Well, I’ll uncover my coin 2 here in Chicago, and I’ll call you to
tell you what I found, let’s say its an H . We know, then, that you
are certain to find an H if you uncover your coin 2 also. There’s
absolutely no doubt about that, because we’ve checked it a million
times. Right?

Alice: Right . . .

Bob: But now there’s no reason for you to uncover your coin 2; you
know what you’ll find anyway. You can uncover coin 1 instead.
And then you’ll know the value of both coins.

Alice: Hmmm . . . yeah, maybe. But we won’t be sure, will we? I mean,
yes, it always worked when we uncovered the same coin before,
but this time you uncovered your coin 2, and your coins 1 and 3
disappeared, and I uncovered my coin 1, and my coins 2 and 3
disappeared. There’s no way we’ll ever be able to check anymore
what would have happened if we had both uncovered coin 2.

Bob: We don’t have to check that anymore, Alice; we’ve already checked
it a million times. Look, your coins are in Pasadena and mine are in
Chicago. Clearly, there’s just no way that my decision to uncover
my coin 2 can have any influence on what you’ll find when you
uncover your coin 2. That’s not what’s happening. It’s just that
when I uncover my coin 2 we’re collecting the information we need
to predict with certainty what will happen when you uncover your
coin 2. Since we’re already certain about it, why bother to do it!

Alice: Okay, Bob, I see what you mean. Why don’t we do an experiment
to see what really happens when you and I uncover different coins?

Bob: I don’t know, Alice. We’re not likely to get any funding to do
such a dopey experiment. I mean, does anybody really care what
happens when I uncover coin 2 and you uncover coin 1?

Alice: I’m not sure, Bob. But I’ve heard about a theorist named Bell.
They say that he has some interesting ideas about the coins. He
might have a theory that makes a prediction about what we’ll find.
Maybe we should talk to him.

Bob: Good idea! And it doesn’t really matter whether his theory makes
any sense or not. We can still propose an experiment to test his
prediction, and they’ll probably fund us.

So Alice and Bob travel to CERN to have a chat with Bell. They tell
Bell about the experiment they propose to do. Bell listens closely, but for
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a long time he remains silent, with a faraway look in his eyes. Alice and
Bob are not bothered by his silence, as they rarely understand anything
that theorists say anyway. But finally Bell speaks.

Bell: I think I have an idea . . . . When Bob uncovers his coin in Chicago,
that can’t exert any influence on Alice’s coin in Pasadena. Instead,
what Bob finds out by uncovering his coin reveals some information

about what will happen when Alice uncovers her coin.

Bob: Well, that’s what I’ve been saying . . .

Bell: Right. Sounds reasonable. So let’s assume that Bob is right about
that. Now Bob can uncover any one of his coins, and know for sure
what Alice will find when she uncovers the corresponding coin. He
isn’t disturbing her coin in any way; he’s just finding out about it.
We’re forced to conclude that there must be some hidden variables

that specify the condition of Alice’s coins. And if those variables
are completely known, then the value of each of Alice’s coins can be
unambiguously predicted.

Bob: [Impatient with all this abstract stuff] Yeah, but so what?

Bell: When your correlated coin sets are prepared, the values of the hid-
den variables are not completely specified; that’s why any one coin
is as likely to be an H as a T . But there must be some probabil-
ity distribution P (x, y, z) (with x, y, z ∈ {H, T}) that characterizes
the preparation and governs Alice’s three coins. These probabilities
must be nonnegative, and they sum to one:

∑

x,y,z∈{H,T }
P (x, y, z) = 1 . (4.15)

Alice can’t uncover all three of her coins, so she can’t measure
P (x, y, z) directly. But with Bob’s help, she can in effect uncover
any two coins of her choice. Let’s denote with Psame(i, j), the prob-
ability that coins i and j (i, j = 1, 2, 3) have the same value, either
both H or both T . Then we see that

Psame(1, 2) = P (HHH) + P (HHT ) + P (TTH) + P (TTT ) ,

Psame(2, 3) = P (HHH) + P (THH) + P (HTT ) + P (TTT ) ,

Psame(1, 3) = P (HHH) + P (HTH) + P (THT ) + P (TTT ) ,

(4.16)

and it immediately follows from eq. (4.15) that

Psame(1, 2) + Psame(2, 3) + Psame(1, 3)

= 1 + 2 P (HHH) + 2 P (TTT ) ≥ 1 . (4.17)
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So that’s my prediction: Psame should obey the inequality

Psame(1, 2) + Psame(2, 3) + Psame(1, 3) ≥ 1 . (4.18)

You can test it my doing your experiment that “uncovers” two coins
at a time.

Bob: Well, I guess the math looks right. But I don’t really get it. Why
does it work?

Alice: I think I see . . . . Bell is saying that if there are three coins on a
table, and each one is either an H or a T , then at least two of the
three have to be the same, either both H or both T . Isn’t that it,
Bell?

Bell stares at Alice, a surprised look on his face. His eyes glaze, and
for a long time he is speechless. Finally, he speaks:

Bell: Yes

So Alice and Bob are amazed and delighted to find that Bell is that
rarest of beasts — a theorist who makes sense. With Bell’s help, their pro-
posal is approved and they do the experiment, only to obtain a shocking
result. After many careful trials, they conclude, to very good statistical
accuracy that

Psame(1, 2) ' Psame(2, 3) ' Psame(1, 3) ' 1

4
, (4.19)

and hence

Psame(1, 2) + Psame(2, 3) + Psame(1, 3) ' 3 · 1

4
=

3

4
< 1 .

(4.20)

The correlations found by Alice and Bob flagrantly violate Bell’s inequal-
ity!

Alice and Bob are good experimenters, but dare not publish so dis-
turbing a result unless they can find a plausible theoretical interpreta-
tion. Finally, they become so desperate that they visit the library to see
if quantum mechanics can offer any solace . . .

4.2.2 Quantum entanglement vs. Einstein locality

What Alice and Bob read about is quantum entanglement. Eventually,
they learn that their magical coins are governed by a maximally entangled
state of two qubits. What Alice and Bob really share are many copies of
the state |ψ−〉. When Alice uncovers a coin, she is measuring her qubit
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along one of three possible axes, no two of which are orthogonal. Since
the measurements don’t commute, Alice can uncover only one of her three
coins. Similarly, when Bob uncovers his coin, he measures his member
of the entangled pair along any one of three axes, so he too is limited to
uncovering just one of his three coins. But since Alice’s measurements
commute with Bob’s, they can uncover one coin each, and study how
Alice’s coins are correlated with Bob’s coins.

To help Alice and Bob interpret their experiment, let’s see what quan-
tum mechanics predicts about these correlations. The state |ψ−〉 has the
convenient property that it remains invariant if Alice and Bob each apply
the same unitary transformation,

U ⊗ U |ψ〉 = |ψ〉 . (4.21)

For infinitesimal unitaries, this becomes the property

(

~σ(A) + ~σ(B)
)

|ψ−〉 = 0 (4.22)

(the state has vanishing total angular momentum, as you can easily check
by an explicit computation). Now consider the expectation value

〈ψ−|
(

~σ(A) · â
) (

~σ(B) · b̂
)

|ψ−〉 , (4.23)

where â and b̂ are unit 3-vectors. Acting on |ψ−〉, we can replace ~σ(B) by

−~σ(A); therefore, the expectation value can be expressed as a property of
Alice’s system, which has density operator ρA = 1

2I:

− 〈ψ−|
(

~σ(A) · â
) (

~σ(A) · b̂
)

|ψ−〉

= −aibjtr
(

ρAσ
(A)
i σ

(A)
j

)

= −aibjδij = −â · b̂ = − cos θ ,
(4.24)

where θ is the angle between the axes â and b̂. Thus we find that the
measurement outcomes are always perfectly anticorrelated when we mea-
sure both spins along the same axis â, and we have also obtained a more
general result that applies when the two axes are different.

The projection operator onto the spin up (spin down) states along n̂ is
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E(n̂,±) = 1
2 (I ± n̂ · ~σ); we therefore obtain

P (++) = 〈ψ−|E(A)(â,+)E(B)(b̂,+)|ψ−〉 =
1

4
(1 − cos θ) ,

P (−−) = 〈ψ−|E(A)(â,−)E(B)(b̂,−)|ψ−〉 =
1

4
(1 − cos θ) ,

P (+−) = 〈ψ−|E(A)(â,+)E(B)(b̂,−)|ψ−〉 =
1

4
(1 + cos θ) ,

P (−+) = 〈ψ−|E(A)(â,−)E(B)(b̂,+)|ψ−〉 =
1

4
(1 + cos θ) ;

(4.25)

here P (++) is the probability that Alice and Bob both obtain the spin-

up outcome when Alice measures along â and Bob measures along b̂, etc.
The probability that their outcomes are the same is

Psame = P (++) + P (−−) =
1

2
(1 − cos θ) , (4.26)

and the probability that their outcomes are opposite is

Popposite = P (+−) + P (−+) =
1

2
(1 + cos θ) . (4.27)

Now suppose that Alice measures her spin along one of the three sym-
metrically distributed axes in the x− z plane,

â1 = (0, 0, 1) ,

â2 =

(√
3

2
, 0,−1

2

)

,

â3 =

(

−
√

3

2
, 0,−1

2

)

, (4.28)

so that

â1 · â2 = â2 · â3 = â3 · â1 = −1

2
. (4.29)

And suppose that Bob measures along one of three axes that are diamet-
rically opposed to Alice’s:

b̂1 = −â1 , b̂2 = −â2 , b̂3 = −â3 . (4.30)

When Alice and Bob choose opposite axes, then θ = 180◦ and Psame = 1.
But otherwise θ = ±60◦ so that cos θ = 1/2 and Psame = 1/4. This is just
the behavior that Alice and Bob found in their experiment, in violation
of Bell’s prediction.
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Bell’s logic seemed compelling but something went wrong, so we are
forced to reconsider his tacit assumptions. First, Bell assumed that there
is a joint probability distribution that governs the possible outcomes of
all measurements that Alice and Bob might perform. This is the hidden-
variable hypothesis. He imagines that if the values of the hidden variables
are exactly known, then the outcome of any measurement can be predicted
with certainty — measurement outcomes are described probabilistically
because the values of the hidden variables are drawn from an ensemble
of possible values. Second, Bell assumed that Bob’s decision about what
to measure in Chicago has no effect on the hidden variables that govern
Alice’s measurement in Pasadena. This is the assumption that the hid-
den variables are local. If we accept these two assumptions, there is no
escaping Bell’s conclusion. We have found that the correlations predicted
by quantum theory are incompatible with theses assumptions.

What are the implications? Perhaps the moral of the story is that it
can be dangerous to reason about what might have happened, but didn’t
actually happen — what are sometimes called counterfactuals. Of course,
we do this all the time in our everyday lives, and we usually get away with
it; reasoning about counterfactuals seems to be acceptable in the classical
world, but sometimes it gets us into trouble in the quantum world. We
claimed that Alice knew what would happen when she measured along â1,
because Bob measured along −â1, and every time we have ever checked,
their measurement outcomes are always perfectly correlated. But Alice
did not measure along â1; she measured along â2 instead. We got into
trouble by trying to assign probabilities to the outcomes of measurements
along â1, â2, and â3, even though Alice can perform just one of those
measurements. In quantum theory, assuming that there is a probability
distribution that governs the outcomes of all three measurements that
Alice might have made, even though she was able to carry out only one
of these measurements, leads to mathematical inconsistencies, so we had
better not do it. We have affirmed Bohr’s principle of complementary —
we are forbidden to consider simultaneously the possible outcomes of two
mutually exclusive experiments.

One who rejects the complementarity principle may prefer to say that
violations of the Bell inequalities (confirmed experimentally) have exposed
an essential nonlocality built into the quantum description of Nature. If

we do insist that it is legitimate to talk about outcomes of mutually ex-
clusive experiments then we are forced to conclude that Bob’s choice of
measurement actually exerted a subtle influence on the outcome of Al-
ice’s measurement. Thus advocates of this viewpoint speak of “quantum
nonlocality.”

By ruling out local hidden variables, Bell demolished Einstein’s dream
that the indeterminacy of quantum theory could be eradicated by adopt-
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ing a more complete, yet still local, description of Nature. If we accept
locality as an inviolable principle, then we are forced to accept random-
ness as an unavoidable and intrinsic feature of quantum measurement,
rather than a consequence of incomplete knowledge.

To some, the peculiar correlations unmasked by Bell’s inequality call
out for a deeper explanation than quantum mechanics seems to provide.
They see the EPR phenomenon as a harbinger of new physics awaiting
discovery. But they may be wrong. We have been waiting over 65 years
since EPR, and so far no new physics.

The human mind seems to be poorly equipped to grasp the correlations
exhibited by entangled quantum states, and so we speak of the weirdness
of quantum theory. But whatever your attitude, experiment forces you
to accept the existence of the weird correlations among the measurement
outcomes. There is no big mystery about how the correlations were estab-
lished — we saw that it was necessary for Alice and Bob to get together
at some point to create entanglement among their qubits. The novelty is
that, even when A and B are distantly separated, we cannot accurately
regard A and B as two separate qubits, and use classical information to
characterize how they are correlated. They are more than just correlated,
they are a single inseparable entity. They are entangled.

4.3 More Bell inequalities

4.3.1 CHSH inequality

Experimental tests of Einstein locality typically are based on another
form of the Bell inequality, which applies to a situation in which Alice can
measure either one of two observables a and a′, while Bob can measure
either b or b′. Suppose that the observables a, a′, b, b′ take values in
{±1}, and are functions of hidden random variables.

If a,a′ = ±1, it follows that either a+a′ = 0, in which case a−a′ = ±2,
or else a − a′ = 0, in which case a + a′ = ±2; therefore

C ≡ (a + a′)b + (a− a′)b′ = ±2 . (4.31)

(Here is where the local hidden-variable assumption sneaks in — we have
imagined that values in {±1} can be assigned simultaneously to all four
observables, even though it is impossible to measure both of a and a′, or
both of b and b′.) Evidently

|〈C〉| ≤ 〈|C|〉 = 2, (4.32)

so that

|〈ab〉 + 〈a′b〉 + 〈ab′〉 − 〈a′b′〉| ≤ 2. (4.33)
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This result is called the CHSH inequality (for Clauser-Horne-Shimony-
Holt). It holds for any random variables a,a′, b, b′ taking values in ±1
that are governed by a joint probability distribution.

To see that quantum mechanics violates the CHSH inequality, let a,a′

denote the Hermitian operators

a = ~σ(A) · â , a′ = ~σ(A) · â′ , (4.34)

acting on a qubit in Alice’s possession, where â, â′ are unit 3-vectors.
Similarly, let b, b′ denote

b = ~σ(B) · b̂ , b′ = ~σ(B) · b̂′ , (4.35)

acting on Bob’s qubit. Each observable has eigenvalues ±1 so that an
outcome of a measurement of the observable takes values in ±1.

Recall that if Alice and Bob share the maximally-entangled state |ψ−〉,
then

〈ψ−|
(

~σ(A) · â
)(

~σ(B) · b̂
)

|ψ−〉 = −â · b̂ = − cos θ ,
(4.36)

where θ is the angle between â and b̂. Consider the case where â′, b̂, â, b̂′

are coplanar and separated by successive 45◦ angles. so that the quantum-
mechanical predictions are

〈ab〉 = 〈a′b〉 = 〈ab′〉 = − cos
π

4
= − 1√

2
,

〈a′b′〉 = − cos
3π

4
=

1√
2
. (4.37)

The CHSH inequality then becomes

4 · 1√
2

= 2
√

2 ≤ 2 , (4.38)

which is clearly violated by the quantum-mechanical prediction.

4.3.2 Maximal violation

In fact the case just considered provides the largest possible quantum-
mechanical violation of the CHSH inequality, as we can see by the fol-
lowing argument. Suppose that a,a′, b, b′ are Hermitian operators with
eigenvalues ±1, so that

a2 = a′2 = b2 = b′2 = I , (4.39)
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and suppose that “Alice’s observables” a,a′ commute with “Bob’s ob-
servables” b, b′:

0 = [a, b] = [a, b′] = [a′, b] = [a′, b′] . (4.40)

Defining

C = ab + a′b + ab′ − a′b′ , (4.41)

we evaluate

C2 =

I +aa′ +bb′ −aa′bb′

+a′a +I +a′abb′ −bb′

+b′b +aa′b′b +I −aa′

−a′ab′b −b′b −a′a +I

, (4.42)

using eq. (4.39). All the quadratic terms cancel pairwise, so that we are
left with

C2 = 4I − aa′bb′ + a′abb′ + aa′b′b − a′ab′b

= 4I − [a,a′][b, b′] . (4.43)

Now recall that the sup norm ‖ M ‖sup of a bounded operator M is
defined by

‖ M ‖sup=
sup

|ψ〉

(‖ M |ψ〉 ‖
‖ |ψ〉 ‖

)

; (4.44)

that is, the sup norm of M is the maximum eigenvalue of
√

M †M . It is
easy to verify that the sup norm has the properties

‖ MN ‖sup ≤‖ M ‖sup · ‖ N ‖sup ,

‖ M + N ‖sup ≤‖ M ‖sup + ‖ N ‖sup . (4.45)

A Hermitian operator with eigenvalues ±1 has unit sup norm, so that

‖ C2 ‖sup≤ 4 + 4 ‖ a ‖sup · ‖ a′ ‖sup · ‖ b ‖sup · ‖ b′ ‖sup= 8 .
(4.46)

Because C is Hermitian,

‖ C2 ‖sup=‖ C ‖2
sup , (4.47)

and therefore

‖ C ‖sup≤ 2
√

2 , (4.48)

which is known as Cirel’son’s inequality.
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The CHSH inequality is the statement |〈C〉| ≤ 2. Quantum mechani-
cally, the absolute value of the expectation value of the Hermitian operator
C can be no larger than its largest eigenvalue,

|〈C〉| ≤‖ C ‖sup≤ 2
√

2 . (4.49)

We saw that this upper bound is saturated in the case where a′, b,a, b′

are separated by successive 45o angles. Thus the violation of the CHSH
inequality that we found is the largest violation allowed by quantum the-
ory.

4.3.3 Quantum strategies outperform classical strategies

The CHSH inequality is a limitation on the strength of the correlations
between the two parts of a bipartite classical system, and the Cirel’son in-
equality is a limitation on the strength of the correlations between the two
parts of a bipartite quantum system. We can deepen our appreciation of
how quantum correlations differ from classical correlations by considering
a game for which quantum strategies outperform classical strategies.

Alice and Bob are playing a game with Charlie. Charlie prepares two
bits x, y ∈ {0, 1}; then he sends x to Alice and y to Bob. After receiving
the input bit x, Alice is to produce an output bit a ∈ {0, 1}, and after
receiving y, Bob is to produce output bit b ∈ {0, 1}. But Alice and Bob
are not permitted to communicate, so that Alice does not know y and
Bob does not know x.

Alice and Bob win the game if their output bits are related to the input
bits according to

a⊕ b = x ∧ y , (4.50)

where ⊕ denotes the sum modulo 2 (the XOR gate) and ∧ denotes the
product (the AND gate). Can Alice and Bob find a strategy that enables
them to win the game every time, no matter how Charlie chooses the
input bits?

No, it is easy to see that there is no such strategy. Let a0, a1 denote the
value of Alice’s output if her input is x = 0, 1 and let b0, b1 denote Bob’s
output if his input is y = 0, 1. For Alice and Bob to win for all possible
inputs, their output bits must satisfy

a0 ⊕ b0 = 0 ,

a0 ⊕ b1 = 0 ,

a1 ⊕ b0 = 0 ,

a1 ⊕ b1 = 1 . (4.51)
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But this is impossible, since by summing the four equations we obtain
0=1.

Suppose that Charlie generates the input bits at random. Then there is
a very simple strategy that enables Alice and Bob to win the game three
times our of four: they always choose the output a = b = 0 so that they
lose only if the input is x = y = 1. The CHSH inequality can be regarded
as the statement that, if Alice and Bob share no quantum entanglement,
then there is no better strategy.

To connect this statement with our previous formulation of the CHSH
inequality, define random variables taking values ±1 as

a = (−1)a0 , a′ = (−1)a1 ,

b = (−1)b0 , b′ = (−1)b1 . (4.52)

Then the CHSH inequality says that for any joint probability distribution
governing a,a′, b, b′ ∈ {±1}, the expectation values satisfy

〈ab〉 + 〈ab′〉 + 〈a′b〉 − 〈a′b′〉 ≤ 2 . (4.53)

Furthermore, if we denote by pxy the probability that eq. (4.51) is satisfied
when the input bits are (x, y), then

〈ab〉 = 2p00 − 1 ,

〈ab′〉 = 2p01 − 1 ,

〈a′b〉 = 2p10 − 1 ,

〈a′b′〉 = 1 − 2p11 ; (4.54)

for example 〈ab〉 = p00 − (1 − p00) = 2p00 − 1, because the value of ab is
+1 when Alice and Bob win and −1 when they lose. The CHSH inequality
eq. (4.53) becomes

2 (p00 + p01 + p10 + p11)− 4 ≤ 2 , (4.55)

or

〈p〉 ≡ 1

4
(p00 + p01 + p10 + p11) ≤

3

4
, (4.56)

where 〈p〉 denotes the probability of winning averaged over a uniform
ensemble for the input bits. Thus, if the input bits are random, Alice and
Bob cannot attain a probability of winning higher than 3/4.

It is worthwhile to consider how the assumption that Alice and Bob
take actions governed by “local hidden variables” limits their success in
playing the game. Although Alice and Bob do not share any quantum
entanglement, they are permitted to share a table of random numbers that
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they may consult to produce their output bits. Thus we may imagine that
hidden variables drawn from an ensemble of possible values guide Alice
and Bob to make correlated decisions. These correlations are limited
by locality — Alice does not know Bob’s input and Bob does not know
Alice’s. In fact, we have learned that for playing this game their shared
randomness is of no value — their best strategy does not use the shared
randomness at all.

But if Alice and Bob share quantum entanglement, they can devise
a better strategy. Based on the value of her input bit, Alice decides to
measure one of two Hermitian observables with eigenvalues ±1: a if x = 0
and a′ is x = 1. Similarly, Bob measures b if y = 0 and b′ if y = 1. Then
the quantum-mechanical expectation values of these observables satisfy
the Cirel’son inequality

〈ab〉 + 〈ab′〉 + 〈a′b〉 − 〈a′b′〉 ≤ 2
√

2 , (4.57)

and the probability that Alice and Bob win the game is constrained by

2 (p00 + p01 + p10 + p11) − 4 ≤ 2
√

2 , (4.58)

or

〈p〉 ≡ 1

4
(p00 + p01 + p10 + p11) ≤

1

2
+

1

2
√

2
≈ .853 .

(4.59)

Furthermore, we have seen that this inequality can be saturated if Al-
ice and Bob share a maximally entangled state of two qubits, and the
observables a,a′, b, b′ are chosen appropriately.

Thus we have found that Alice and Bob can play the game more suc-
cessfully with quantum entanglement than without it. At least for this
purpose, shared quantum entanglement is a more powerful resource than
shared classical randomness. But even the power brought by entangle-
ment has limits, limits embodied by the Cirel’son inequality.

4.3.4 All entangled pure states violate Bell inequalities

Separable states do not violate Bell inequalities. For example, in the case
of a separable pure state, if a is an observable acting on Alice’s qubit, and
b is an observable acting on Bob’s, then

〈ab〉 = 〈a〉〈b〉. (4.60)

No Bell-inequality violation can occur, because we have already seen that
a (local) hidden-variable theory does exist that correctly reproduces the
predictions of quantum theory for a pure state of a single qubit. A general
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separable state is just a probabilistic mixture of separable pure states, so
that the correlations between the subsystems are entirely classical, and
the Bell inequalities apply.

On the other hand, we have seen that a maximally entangled state such
as |ψ−〉 is Bell-inequality violating. But what about pure states that are
only partially entangled such as

|φ〉 = α|00〉+ β|11〉 ? (4.61)

Any pure state of two qubits can be expressed this way in the Schmidt
basis; with suitable phase conventions, α and β are real and nonnegative.

Suppose that Alice and Bob both measure along an axis in the x-z
plane, so that their observables are

a = σ
(A)
3 cos θA + σ

(A)
1 sin θA ,

b = σ
(B)
3 cos θB + σ

(B)
1 sin θB . (4.62)

The state |φ〉 has the properties

〈φ|σ3 ⊗ σ3|φ〉 = 1 , 〈φ|σ1 ⊗ σ1|φ〉 = 2αβ ,

〈φ|σ3 ⊗ σ1|φ〉 = 0 = 〈φ|σ1 ⊗ σ3|φ〉 , (4.63)

so that the quantum-mechanical expectation value of ab is

〈ab〉 = 〈φ|ab|φ〉 = cos θA cos θB + 2αβ sin θA sin θB
(4.64)

(and we recover cos(θA − θB) in the maximally entangled case α = β =
1/

√
2). Now let us consider, for simplicity, the (nonoptimal!) special case

θA = 0, θ′A =
π

2
, θ′B = −θB , (4.65)

so that the quantum predictions are:

〈ab〉 = cos θB = 〈ab′〉 ,
〈a′b〉 = 2αβ sin θB = −〈a′b′〉 . (4.66)

Plugging into the CHSH inequality, we obtain

| cos θB − 2αβ sin θB | ≤ 1 , (4.67)

and we easily see that violations occur for θB close to 0 or π. Expanding
to linear order in θB , the left-hand side is

' 1− 2αβθB , (4.68)
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which surely exceeds 1 for αβ > 0 and θB negative and small.

We have shown that any entangled pure state of two qubits violates
some Bell inequality. It is not hard to generalize the argument to an
arbitrary bipartite pure state. For bipartite pure states, then, “entangled”
is equivalent to “Bell-inequality violating.” For bipartite mixed states,
however, we will see later that the situation is more subtle.

4.3.5 Photons

Experiments that test the Bell inequality usually are done with entangled
photons, not with spin-1

2 objects. What are the quantum-mechanical
predictions for photons?

Recall from §2.2.2 that for a photon traveling in the ẑ direction, we use
the notation |x〉, |y〉 for the states that are linearly polarized along the x
and y axes respectively. In terms of these basis states, the states that are
linearly polarized along “horizontal” and “vertical” axes that are rotated
by angle θ relative to the x and y axes can be expressed as

|H(θ)〉 =

(

cos θ
sin θ

)

, |V (θ)〉 =

( − sin θ
cos θ

)

. (4.69)

We can construct a 2×2 matrix whose eigenstates are |H(θ)〉 and |V (θ)〉,
with respective eigenvalues ±1; it is

τ (θ) ≡ |H(θ)〉〈H(θ)| − |V (θ)〉〈V (θ)| =

(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)

.
(4.70)

The generator of rotations about the ẑ axis is J = σ2, and the eigen-
states of J with eigenvalues ±1 are the circularly polarized states

|+〉 =
1√
2

(

1
i

)

, |−〉 =
1√
2

(

i
1

)

. (4.71)

Suppose that an excited atom emits two photons that come out back to
back, with vanishing angular momentum and even parity. The two-photon
states

|+〉A|−〉B
|−〉A|+〉B (4.72)

are invariant under rotations about ẑ. The photons have opposite val-
ues of Jz, but the same helicity (angular-momentum along the axis of
propagation), since they are propagating in opposite directions. Under a
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reflection in the y−z plane, the polarization states are modified according
to

|x〉 → −|x〉 , |y〉 → |y〉 , (4.73)

or

|+〉 → +i|−〉 , |−〉 → −i|+〉 ; (4.74)

therefore, the parity eigenstates are entangled states

1√
2
(|+〉A|−〉B ± |−〉A|+〉B) . (4.75)

The state with Jz = 0 and even parity, then, expressed in terms of the
linear polarization states, is

− i√
2
(|+ −〉AB + | − +〉AB)

=
1√
2
(|xx〉AB + |yy〉AB) ≡ |φ+〉AB . (4.76)

Because of invariance under rotations about ẑ, the state has this form
irrespective of how we orient the x and y axes.

Alice or Bob can use a polarization analyzer to project the polarization
state of a photon onto the basis {|H(θ)〉, |V (θ)〉}, and hence measure τ (θ).
For two photons in the state |φ+〉, if Alice orients her polarizer with angle
θA and Bob with angle θB , then the correlations of their measurement
outcomes are encoded in the expectation value

〈φ+|τ (A)(θA)τ (B)(θB)|φ+〉. (4.77)

Using rotational invariance:

= 〈φ+|τ (A)(0)τ (B)(θB − θA)|φ+〉

=
1

2
〈x|τ (B)(θB − θA)|x〉 − 1

2
〈y|τ (B)(θB − θA)|y〉

= cos 2(θB − θA) . (4.78)

Recall that for the measurement of qubits on the Bloch sphere, we found
the similar expression cos θ, where θ is the angle between Alice’s polariza-
tion axis and Bob’s. Here we have cos 2θ instead, because photons have
spin-1 rather than spin-1

2 .

If Alice measures one of the two observables a = τ (A)(θA) or a′ =
τ (A)(θ′A) and Bob measures either b = τ (B)(θB) or b′ = τ (B)(θB), then
under the local hidden-variable assumption the CHSH inequality applies.
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If we plug in the quantum predictions for the expectation values, we
obtain

∣

∣cos 2(θB − θA) + cos 2(θB − θ′A) + cos 2(θ′B − θA) − cos 2(θ′B − θ′A)
∣

∣ ≤ 2 .
(4.79)

The maximal violation that saturates Cirel’son’s inequality — left-hand
side equal to 2

√
2 — occurs when θ′A, θB , θA and θ′B are separated by

successive 22 1
2
◦

angles, so that

1√
2

= cos 2(θB − θA) = cos 2(θB − θ′A)

= = cos 2(θ′B − θA) = − cos 2(θ′B − θ′A) . (4.80)

4.3.6 Experiments and loopholes

Locality loophole. Experiments with entangled pairs of photons have tested
the CHSH inequality in the form eq. (4.79). The experiments confirm the
quantum predictions, and demonstrate convincingly that the CHSH in-
equality is violated. These experiments, then, seem to show that Nature
cannot be accurately described by a local hidden-variable theory.

Or do they? A skeptic might raise objections. For example, in the
derivation of the CHSH inequality, we assumed that after Alice decides
to measure either a or a′, no information about Alice’s decision reaches
Bob’s detector before Bob measures (and likewise, we assumed that if Bob
measures first, no information about Bob’s decision reaches Alice before
she measures). Otherwise, the marginal probability distribution for Bob’s
outcomes could be updated after Alice’s measurement and before Bob’s,
so that the CHSH inequality need not apply. The assumption that no such
update can occur is justified by relativistic causality if Alice’s decision
and measurement are events spacelike separated from Bob’s decision and
measurement. The skeptic would insist that the experiment fulfill this
condition, which is called the locality loophole.

In 1982, Aspect and collaborators conducted an experiment that ad-
dressed the locality loophole. Two entangled photons were produced in
the decay of an excited calcium atom, and each photon was directed by a
switch to one of two polarization analyzers, chosen pseudo-randomly. The
photons were detected about 12m apart, corresponding to a light travel
time of about 40 ns. This time was considerably longer than either the
cycle time of the switch, or the difference in the times of arrival of the
two photons. Therefore the “decision” about which observable to measure
was made after the photons were already in flight, and the events that
selected the axes for the measurement of photons A and B were spacelike
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separated. The results were consistent with the quantum predictions, and
violated the CHSH inequality by five standard deviations. Since Aspect,
many other experiments have confirmed this finding, including ones in
which detectors A and B are kilometers apart.

Detection loophole. Another objection that the skeptic might raise is
called the detection loophole. In experiments with photons, the detection
efficiency is low. Most entangled photon pairs do not result in detections
at both A and B. Among the things that can go wrong: a photon might
be absorbed before reaching the detector, a photon might miss the detec-
tor, or a photon might arrive in the detector but fail to trigger it. Data
is accepted by the experiment only when two photons are detected in co-
incidence, and in testing the CHSH inequality, we must assume that the
data collected is a fair sample of all the entangled pairs.

But, what if the local hidden variables govern not just what polarization
state is detected, but also whether the detector fires at all? Then the data
collected might be a biased sample, and the CHSH inequality need not
apply.

In Exercise 4.??, we will show that the detection loophole can be closed
if the photons are detected with an efficiency above 82.84%. Current ex-
periments with photons don’t approach the necessary efficiency. Experi-
ments that use ion traps have tested the CHSH inequality with detection
efficiency close to 100%, but these experiments do not address the local-
ity loophole. No experiment that simultaneously closes the locality and
detection loopholes has yet been done.

Free-will loophole. Suppose that an experiment is done in which the pho-
ton detection efficiency is perfect, and in which Alice and Bob appear to
make spacelike-separated decisions. A skeptic might still resist the con-
clusion that local hidden-variable theories are ruled out, by invoking the
free-will loophole. Conceivably, the decisions that Alice and Bob make
about what to measure are themselves governed by the local hidden vari-
ables. Then their decisions might be correlated with the values of the
hidden variables that determine the measurement outcomes, so that they
are unable to obtain a fair sample of the distribution of the hidden vari-
ables, and the CHSH inequality might be violated.

All of us have to decide for ourselves how seriously to take this objec-
tion.

4.4 Using entanglement

After Bell’s work, quantum entanglement became a subject of intensive
study, among those interested in the foundations of quantum theory.
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Gradually, a new viewpoint evolved: entanglement is not just a unique
tool for exposing the weirdness of quantum mechanics, but also a poten-
tially valuable resource. By exploiting entangled quantum states, we can
perform tasks that are otherwise difficult or impossible.

4.4.1 Dense coding

Our first example is an application of entanglement to communication.
Alice wants to send messages to Bob. She might send classical bits (like
dots and dashes in Morse code), but let’s suppose that Alice and Bob are
linked by a quantum channel. For example, Alice can prepare qubits (like
photons) in any polarization state she pleases, and send them to Bob,
who measures the polarization along the axis of his choice. Is there any
advantage to sending qubits instead of classical bits?

In principle, if their quantum channel has perfect fidelity, and Alice and
Bob perform the preparation and measurement with perfect efficiency,
then they are no worse off using qubits instead of classical bits. Alice can
prepare, say, either | ↑z〉 or | ↓z〉, and Bob can measure along ẑ to infer
the choice she made. This way, Alice can send one classical bit with each
qubit. But in fact, that is the best she can do. Sending one qubit at a
time, no matter how she prepares it and no matter how Bob measures it,
no more than one classical bit can be carried by each qubit (even if the
qubits are entangled with one another). This statement, a special case
of the Holevo bound on the classical information capacity of a quantum
channel, will be derived in Chapter 5.

But now, let’s change the rules a bit — let’s suppose that Alice and
Bob share an entangled pair of qubits in the state |φ+〉AB . The pair was
prepared last year; one qubit was shipped to Alice and the other to Bob,
in the hope that the shared entanglement would come in handy someday.
Now, use of the quantum channel is very expensive, so Alice can afford to
send only one qubit to Bob. Yet it is of the utmost importance for Alice
to send Bob two classical bits of information.

Fortunately, Alice remembers about the entangled state |φ+〉AB that
she shares with Bob, and she carries out a protocol that she and Bob had
arranged for just such an emergency. On her member of the entangled
pair, she can perform one of four possible unitary transformations:

1) I (she does nothing) ,

2) σ1 (180o rotation about x̂-axis) ,

3) σ2 (180o rotation about ŷ-axis) ,

4) σ3 (180o rotation about ẑ-axis) .
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As we have seen, by doing so, she transforms |φ+〉AB to one of 4 mutually
orthogonal states:

1) |φ+〉AB ,

2) |ψ+〉AB ,

3) |ψ−〉AB (up to a phase) ,

4) |φ−〉AB .

Now, she sends her qubit to Bob, who receives it and then performs
an orthogonal collective measurement on the pair that projects onto the
maximally entangled basis. The measurement outcome unambiguously
distinguishes the four possible actions that Alice could have performed.
Therefore the single qubit sent from Alice to Bob has successfully carried
2 bits of classical information! Hence this procedure is called “dense
coding.”

A nice feature of this protocol is that, if the message is highly con-
fidential, Alice need not worry that an eavesdropper will intercept the
transmitted qubit and decipher her message. The transmitted qubit has
density matrix ρA = 1

2IA, and so carries no information at all. All the
information is in the correlations between qubits A and B, and this infor-
mation is inaccessible unless the adversary is able to obtain both members
of the entangled pair. (Of course, the adversary can “jam” the channel,
preventing the information from reaching Bob.)

From one point of view, Alice and Bob really did need to use the channel
twice to exchange two bits of information. For example, we can imagine
that Alice prepared the state |φ+〉 herself. Last year, she sent half of the
state to Bob, and now she sends him the other half. So in effect, Alice
has sent two qubits to Bob in one of four mutually orthogonal states, to
convey two classical bits of information as the Holevo bound allows.

Still, dense coding is rather weird, for several reasons. First, Alice sent
the first qubit to Bob long before she knew what her message was going
to be. Second, each qubit by itself carries no information at all; all the
information is encoded in the correlations between the qubits. Third, it
would work just as well for Bob to prepare the entangled pair and send
half to Alice; then two classical bits are transmitted from Alice to Bob
by sending a single qubit from Bob to Alice and back again.

Anyway, when an emergency arose and two bits had to be sent immedi-
ately while only one use of the channel was possible, Alice and Bob could
exploit the pre-existing entanglement to communicate more efficiently.
They used entanglement as a resource.
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4.4.2 Quantum teleportation

In dense coding, quantum information could be exploited to enhance the
transmission of classical information. Specifically, if Alice and Bob share
entanglement, then sending one qubit is sufficient to convey two classi-
cal bits. Now one wonders about the converse. If Alice and Bob share
entanglement, can sending two classical bits suffice to convey a qubit?

Imagine that Charlie has prepared for Alice a qubit in the state |ψ〉,
but Alice doesn’t know anything about what state Charlie prepared. Bob
needs this qubit desperately, and Alice wants to help him. But that darn
quantum channel is down again! Alice can send only classical information
to Bob.

She could try measuring ~σ · n̂, projecting her qubit to either | ↑n̂〉 or
| ↓n̂〉. She could send the one-bit measurement outcome to Bob who could
then proceed to prepare the state that Alice found. But you showed in
Exercise ?? that Bob’s state |ϕ〉 will not be a perfect copy of Alice’s; on
the average it will match Alice’s qubit with fidelity

F = |〈ϕ|ψ〉|2 =
2

3
, (4.81)

This fidelity is better than could have been achieved if Bob had merely
chosen a state at random (F = 1

2 ), but it is not nearly as good as the
fidelity that Bob requires. Furthermore, as we will see in Chapter 5,
there is no protocol in which Alice measures the qubit and sends classical
information to Bob that achieves a fidelity better than 2/3.

Fortunately, Alice and Bob recall that they share the maximally en-
tangled state |φ+〉AB, which they prepared last year. Why not use the
entanglement as a resource? If they are willing to consume the shared
entanglement and communicate classically, can Alice send her qubit to
Bob with fidelity better than 2/3?

In fact they can achieve fidelity F = 1, by carrying out the following
protocol: Alice unites the unknown qubit |ψ〉C she wants to send to Bob
with her half of the |φ+〉AB pair that she shares with Bob. She measures
the two commuting observables

σ
(C)
1 ⊗ σ

(A)
1 , σ

(C)
3 ⊗ σ

(A)
3 , (4.82)

thus performing Bell measurement — a projection of the two qubits onto
one of the four maximally entangled states |φ±〉CA, |ψ±〉CA. She sends
her measurement outcome (two bits of classical information) to Bob over
the classical channel. Upon receiving this information, Bob performs one
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of four operations on his qubit

Alice measures |φ+〉CA → Bob applies I(B) ,

Alice measures |ψ+〉CA → Bob applies σ
(B)
1 ,

Alice measures |ψ−〉CA → Bob applies σ
(B)
2 ,

Alice measures |φ−〉CA → Bob applies σ
(B)
3 .

(4.83)

This action transforms Bob’s qubit (his member of the entangled pair that
he initially shared with Alice) into a perfect copy of |ψ〉C. This magic
trick is called quantum teleportation.

How does it work? We merely note that for |ψ〉 = a|0〉+ b|1〉, we may
write

|ψ〉C|φ+〉AB = (a|0〉C + b|1〉C)
1√
2
(|00〉AB + |11〉AB)

=
1√
2
(a|000〉CAB + a|011〉CAB + b|100〉CAB + b|111〉CAB)

=
1

2
a(|φ+〉CA + |φ−〉CA)|0〉B +

1

2
a(|ψ+〉CA + |ψ−〉CA)|1〉B

+
1

2
b(|ψ+〉CA − |ψ−〉CA)|0〉B +

1

2
b(|φ+〉CA − |φ−〉CA)|1〉B

=
1

2
|φ+〉CA(a|0〉B + b|1〉B)

+
1

2
|ψ+〉CA(a|1〉B + b|0〉B)

+
1

2
|ψ−〉CA(a|1〉B − b|0〉B)

+
1

2
|φ−〉CA(a|0〉B − b|1〉B)

=
1

2
|φ+〉CA|ψ〉B +

1

2
|ψ+〉CAσ1|ψ〉B

+
1

2
|ψ−〉CA(−iσ2)|ψ〉B +

1

2
|φ−〉CAσ3|ψ〉B. (4.84)

Thus we see that when Alice performs the Bell measurement on qubits
C and A, all four outcomes are equally likely. Once Bob learns Alice’s
measurement outcome, he possesses the pure state σ|ψ〉, where σ is a
known Pauli operator, one of {I,σ1,σ2,σ3}. The action prescribed in
eq. (4.83) restores Bob’s qubit to the initial state |ψ〉.

Quantum teleportation is a curious procedure. Initially, Bob’s qubit is
completely uncorrelated with the unknown qubit |ψ〉C, but Alice’s Bell
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measurement establishes a correlation between A and C. The measure-
ment outcome is in fact completely random, so Alice (and Bob) actually
acquire no information at all about |ψ〉 by making this measurement.
And that is a good thing, as we know that if they were to collect any
information about the state they would unavoidably disturb the state.

How then does the quantum state manage to travel from Alice to Bob?
It is a bit puzzling. On the one hand, we can hardly say that the two
classical bits that were transmitted carried this information — the bits
were random. So we are tempted to say that the shared entangled pair
made the teleportation possible. But remember that the entangled pair
was actually prepared last year, long before Alice ever dreamed that she
would be sending the qubit to Bob . . .

We should also note that the teleportation procedure is fully consistent
with the no-cloning principle. True, a copy of the state |ψ〉B appeared
in Bob’s hands. But the original |ψ〉C had to be destroyed by Alice’s
measurement before the copy could be created.

Our findings about dense coding and quantum teleportation can be
summarized as statements about how one type of resource can simulate
another. Let us introduce the terminology ebit for an entangled pair of
qubits shared by two parties (e for entangled), and cbit for a classical bit
(c for classical). We teleport one qubit from Alice to Bob by consuming
one ebit and sending two cbits, and we send two cbits from Alice and
Bob via dense coding by consuming one ebit and transporting one qubit.
Thus we may say

1 ebit + 2 cbits → 1 qubit ,

1 ebit + 1 qubit → 2 cbits , (4.85)

meaning that the resources on the left suffice to simulate the resources on
the right. Entanglement is essential in these protocols. Without ebits, a
qubit is worth only one cbit, and without ebits, a “teleported” qubit has
fidelity F ≤ 2/3.

4.4.3 Quantum teleportation and maximal entanglement

The teleportation concept has an air of mystery. One would like to un-
derstand more deeply why it works. A helpful clue is that to teleport
with fidelity F = 1 the entangled state consumed in the protocol must
be maximally entangled. And the crucial feature of bipartite maximally
entangled states is that either Alice or Bob can transform one maximally
entangled state to another by applying a local unitary transformation.

To see more clearly how quantum teleportation works, consider tele-
porting an N -dimensional system using an N ×N maximally entangled
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state of the form

|Φ〉 =
1√
N

N−1
∑

i=0

|i〉 ⊗ |i〉 . (4.86)

A useful property of this state is

CA〈Φ|Φ〉AB =
1

N

∑

i,j

(C〈i| ⊗ A〈i|) (|j〉A ⊗ |j〉B)

=
1

N

∑

i

|i〉B C〈i| ≡
1

N
(T )BC (4.87)

Here we have defined the transfer operator (T )BC which has the property

T BC|ϕ〉C = T BC

(

∑

i

ai|i〉C
)

=
∑

i

ai|i〉B = |ϕ〉B ;
(4.88)

it maps a state in C to the identical state in B. This property has no
invariant meaning independent of the choice of basis in B and C; rather
T BC just describes an arbitrary way to relate the orthonormal bases of
the two systems. Of course, Alice and Bob would need to align their bases
in some way to verify that teleportation has really succeeded.

Now recall that any other N × N maximally entangled state has a
Schmidt decomposition of the form

1√
N

N−1
∑

i=0

|i′〉 ⊗ |i〉 , (4.89)

and so can be expressed as

|Φ(U)〉 ≡ U ⊗ I|Φ〉 , (4.90)

where

U |i〉 = |i′〉 =
∑

j

|j〉Uji . (4.91)

Writing

|Φ(U)〉AB =
1√
N

∑

i,j

|j〉A ⊗ |i〉B Uji , (4.92)

we can easily verify that

CA〈Φ(U)|Φ(V T )〉AB =
1

N

(

V U−1
)

B
T BC , (4.93)
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where V T denotes the transpose of V in the standard basis (V T
ij = Vji);

in particular, then, the transfer operator can be expressed as

1

N
T BC = CA〈Φ(U)|Φ((UT )〉AB , (4.94)

for any unitary U .
Now suppose that Alice and Bob share |Φ〉AB, and that Charlie has pre-

pared the state |ψ〉C and has deposited it in Alice’s laboratory. Alice per-
forms a measurement that projects CA onto a maximally entangled basis,
obtaining the outcome |Φ(Ua)〉CA for some unitary U a. Then we know
from eq. (4.94) that if Alice and Bob had shared the state |Φ((UT

a )〉AB

instead of |Φ〉AB, then Alice’s measurement would have prepared in Bob’s
lab a perfect replica of the state |ψ〉. Unfortunately, they did not have
the foresight to share the right state to begin with. But it’s not too late!
Bob realizes that

|Φ(UT
a )〉 = IA ⊗ (U a)B |Φ〉AB , (4.95)

and of course (Ua)B commutes with Alice’s measurement. Hence, when
Bob hears from Alice that her measurement outcome was |Φ((UT

a )〉AB, he
applies (U a)B to his half of the state he had shared with Alice. Then the
protocol is equivalent to one in which they had shared the right maximally
entangled state to begin with, and Bob’s state has been transformed into
|ψ〉B!

This approach to teleportation has some conceptual advantages. For
one, we can easily see that Alice is not required to perform an orthogonal
measurement. To achieve teleportation with fidelity F = 1 it suffices that
she perform a POVM with operation elements Ma, where each Ma has
the property

M †
aMa ∝ |Φ(Ua)〉〈Φ(Ua)| (4.96)

for some unitary U a. Also, we can easily see how the teleportation proto-
col should be modified if the initial maximally entangled state that Alice
and Bob share is not |Φ〉AB but rather

|Φ(V T )〉AB = IA ⊗ V B|Φ〉AB . (4.97)

If Alice’s measurement outcome is |Φ(Ua)〉CA, then eq. (4.93) tells us that
the state Bob receives is

V U−1
a |ψ〉B . (4.98)

To recover |ψ〉B, Bob must apply U aV
−1.
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The operator ordering in eq. (4.98) may seem counterintuitive at first —
it seems as though Alice’s measurement (Ua) precedes the preparation of
the shared entangled state (V ). But this “time reversal” has a straight-
forward interpretation. If Alice’s measurement outcome is |Φ(Ua)〉CA,
then Bob would have received a perfect copy of |ψ〉 if the initial entangled
state had been IA ⊗ (U a)B |Φ〉AB. To simulate the situation in which
the entangled state had been chosen properly from the start, Bob first
applies V −1 to undo the “twist” in |Φ(V T )〉AB, recovering |Φ〉AB, and
then applies U a to transform the entangled state to the desired one.

There is a more fanciful interpretation of eq. (4.98) which, while not
necessary, is nonetheless irresistable. We might “explain” how quantum
information is transferred from Alice and Bob by following the world
line of a qubit traveling in spacetime. The qubit moves forward in time
from Charlie’s preparation to Alice’s measurement, then backward in time
from the measurement to the initial preparation of the entangled pair,
and finally forward in time again from the preparation of the pair to
Bob’s laboratory. Since this world line visits Alice’s measurement before
arriving at the preparation of the entanglement, U−1

a acts “first” and V

acts “later on.”

4.4.4 Quantum software

Teleportation has some interesting applications. For example, imagine
that Alice and Bob wish to apply the “quantum gate” V to the unknown
state |ψ〉C. But applying V requires sophisitcated hardware that they
can’t afford.

A more economical alternative is to purchase quantum software from a
vendor. The software is a bipartite state that the vendor certifies to be

|Φ(V T )〉AB = IA ⊗ V B|φ〉AB . (4.99)

Alice’s hardware is powerful enough for her to perform a measurement
that projects onto the basis {|Φ(Ua)〉CA}; once the outcome a is known,
the state V U−1

a |ψ〉B has been prepared. Bob can then complete the
execution of V to |ψ〉 by applying V U aV

−1

This procedure may seem silly — why assume that Bob is able to apply
V UaV

−1 but unable to apply V ? In fact it is not so silly, and has im-
portant applications to fault-tolerant quantum computation that we will
explore further in Chapter 8. In some cases, executing V U aV

−1 really is
a lot easier than applying V . Furthermore, Alice and Bob might be able
to prepare the quantum software themselves, instead of buying it, even
though they can’t apply V reliably. This is possible because it is easier
to verify that a known quantum state has been properly prepared than to
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verify that a known unitary transformation has been successfully applied
to an unknown state. If the hardware that applies V cannot be trusted,
then we prefer to use it to prepare software offline, and then subject the
software to quality assurance, rather than risk causing irrevocable damage
to our unknown state through a faulty execution of V .

Each application of V consumes one copy of the quantum software.
Thus, this protocol for executing V with the help of quantum software
uses entanglement as a resource.

4.5 Quantum cryptography

4.5.1 EPR quantum key distribution

Everyone has secrets, including Alice and Bob. Alice needs to send a
highly private message to Bob, but Alice and Bob have a very nosy friend,
Eve, who they know will try to listen in. Can they communicate with
assurance that Eve is unable to eavesdrop?

Obviously, they should use some kind of code. Trouble is, aside from
being very nosy, Eve is also very smart. Alice and Bob are not confident
that they are clever enough to devise a code that Eve cannot break.

Except there is one coding scheme that is surely unbreakable. If Alice
and Bob share a private key, a string of random bits known only to them,
then Alice can convert her message to ASCII (a string of bits no longer
than the key) add each bit of her message (module 2) to the corresponding
bit of the key, and send the result to Bob. Receiving this string, Bob can
add the key to it to extract Alice’s message.

This scheme is secure because even if Eve should intercept the trans-
mission, she will not learn anything because the transmitted string itself
carries no information — the message is encoded in a correlation between
the transmitted string and the key (which Eve doesn’t know).

There is still a problem, though, because Alice and Bob need to estab-
lish a shared random key, and they must ensure that Eve can’t know the
key. They could meet to exchange the key, but that might be impractical.
They could entrust a third party to transport the key, but what if the in-
termediary is secretly in cahoots with Eve? They could use “public key”
distribution protocols, but the security of such protocols is founded on
assumptions about the computational resources available to a potential
adversary. Indeed, we will see in Chapter 6 that public key protocols are
vulnerable to attack by an eavesdropper who is equipped with a quantum
computer.

Can Alice and Bob exploit quantum information (and specifically en-
tanglement) to solve the key exchange problem? They can! Quantum key

distribution protocols can be devised that are invulnerable to any attack
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allowed by the laws of physics.
Let’s suppose that Alice and Bob share a supply of entangled pairs,

each prepared in the state |φ+〉. To establish a shared private key, they
may carry out this protocol:

For each qubit in her/his possession, Alice and Bob decide to measure
either σ1 or σ3. The decision is pseudo-random, each choice occuring
with probability 1/2. Then, after the measurements are performed, both
Alice and Bob publicly announce what observables they measured, but
do not reveal the outcomes they obtained. For those cases (about half)
in which they measured their qubits along different axes, their results are
discarded (as Alice and Bob obtained uncorrelated outcomes). For those
cases in which they measured along the same axis, their results, though
random, are perfectly correlated. Hence, they have established a shared
random key.

But, is this protocol really invulnerable to a sneaky attack by Eve? In
particular, Eve might have clandestinely tampered with the pairs at some
time in the past. Then the pairs that Alice and Bob possess might be
(unbeknownst to Alice and Bob) not perfect |φ+〉’s, but rather pairs that
are entangled with qubits in Eve’s possession. Eve can then wait until
Alice and Bob make their public announcements, and proceed to measure
her qubits in a manner designed to acquire maximal information about
the results that Alice and Bob obtained. Alice and Bob must protect
themselves against this type of attack.

If Eve has indeed tampered with Alice’s and Bob’s pairs, then the most
general possible state for an AB pair and a set of E qubits has the form

|Υ〉ABE = |00〉AB|e00〉E + |01〉AB|e01〉E
+ |10〉AB|e10〉E + |11〉AB|e11〉E , (4.100)

where Eve’s states |eij〉E are neither normalized nor mutually orthogonal.
Now recall that the defining property or |φ+〉 is that it is an eigenstate

with eigenvalue +1 of both σ
(A)
1 σ

(B)
1 and σ

(A)
3 σ

(B)
3 . Suppose that A and

B are able to verify that the pairs in their possession have this property.

To satisfy σ
(A)
3 σ

(B)
3 = 1, we must have

|Υ〉AB = |00〉AB|e00〉E + |11〉AB|e11〉E , (4.101)

and to also satisfy σ
(A)
1 σ

(B)
1 = 1, we must have

|Υ〉ABE =
1√
2
(|00〉AB + |11〉AB)|e〉E = |φ+〉AB|e〉E .

(4.102)

We see that it is possible for the AB pairs to be eigenstates of σ
(A)
1 σ

(B)
1

and σ
(A)
3 σ

(B)
3 only if they are completely unentangled with Eve’s qubits.
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Therefore, Eve will not be able to learn anything about Alice’s and Bob’s
measurement results by measuring her qubits. The random key is secure.

To verify the properties σ
(A)
1 σ

(B)
1 = 1 = σ

(A)
3 σ

(B)
3 , Alice and Bob

can sacrifice a portion of their shared key, and publicly compare their
measurement outcomes. They should find that their results are indeed
perfectly correlated. If so they will have high statistical confidence that
Eve is unable to intercept the key. If not, they have detected Eve’s nefar-
ious activity. They may then discard the key, and make a fresh attempt
to establish a secure key.

As I have just presented it, the quantum key distribution protocol seems
to require entangled pairs shared by Alice and Bob, but this is not really
so. We might imagine that Alice prepares the |φ+〉 pairs herself, and then
measures one qubit in each pair before sending the other to Bob. This is
completely equivalent to a scheme in which Alice prepares one of the four
states

| ↑z〉, | ↓z〉, | ↑x〉, | ↓x〉, (4.103)

(chosen at random, each occuring with probability 1/4) and sends the
qubit to Bob. Bob’s measurement and the verification are then carried
out as before. This scheme (known as the BB84 quantum key distribution
protocol) is just as secure as the entanglement-based scheme.†

Another intriguing variation is called the “time-reversed EPR” scheme.
Here both Alice and Bob prepare one of the four states in eq. (4.103),
and they both send their qubits to Charlie. Then Charlie performs a Bell

measurement on the pair — that is, he measures σ
(A)
1 σ

(B)
1 and σ

(A)
3 σ

(B)
3 ,

orthogonally projecting out one of |φ±〉|ψ±〉, and he publicly announces
the result. Since all four of these states are simultaneous eigenstates of

σ
(A)
1 σ

(B)
1 and σ

(A)
3 σ

(B)
3 , when Alice and Bob both prepared their spins

along the same axis (as they do about half the time) they share a single
bit.‡ Of course, Charlie could be allied with Eve, but Alice and Bob
can verify that Charlie and Eve have acquired no information as before,
by comparing a portion of their key. This scheme has the advantage
that Charlie could operate a central switching station by storing qubits
received from many parties, and then perform his Bell measurement when
two of the parties request a secure communication link. (Here we assume
that Charlie has a stable quantum memory in which qubits can be stored

† Except that in the EPR scheme, Alice and Bob can wait until just before they need
to talk to generate the key, thus reducing the risk that Eve might at some point
burglarize Alice’s safe to learn what states Alice prepared (and so infer the key).

‡ Until Charlie makes his measurement, the states prepared by Bob and Alice are
totally uncorrelated. A definite correlation (or anti-correlation) is established after
Charlie performs his measurement.
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accurately for as long as necessary.) A secure key can be established even
if the quantum communication line is down temporarily, as long as both
parties had the foresight to send their qubits to Charlie on an earlier
occasion (when the quantum channel was open).

So far, we have made the unrealistic assumption that the quantum
communication channel is perfect, but of course in the real world errors
will occur. Therefore even if Eve has been up to no mischief, Alice and
Bob will sometimes find that their verification test will fail. But how are
they to distinguish errors due to imperfections of the channel from errors
that occur because Eve has been eavesdropping?

To address this problem, Alice and Bob can enhance their protocol in
two ways. First they implement (classical) error correction to reduce the
effective error rate. For example, to establish each bit of their shared
key they could actually exchange a block of three random bits. If the
three bits are not all the same, Alice can inform Bob which of the three
is different than the other two; Bob can flip that bit in his block, and
then use majority voting to determine a bit value for the block. This way,
Alice and Bob share the same key bit even if an error occured for one bit
in the block of three.

However, error correction alone does not suffice to ensure that Eve has
acquired negligible information about the key — error correction must
be supplemented by (classical) privacy amplification. For example, after
performing error correction so that they are confident that they share the
same key, Alice and Bob might extract a bit of “superkey” as the parity

of n key bits. To know anything about the parity of n bits, Eve would
need to know something about each of the bits. Therefore, the parity bit
is considerably more secure, on the average, than each of the individual
key bits.

If the error rate of the channel is low enough, one can show that quan-
tum key distribution, supplemented by error correction and privacy am-
plification, is invulnerable to any attack that Eve might muster (in the
sense that the information acquired by Eve can be guaranteed to be ar-
bitrarily small). We will return to the problem of proving the security of
quantum key distribution in Chapter 7.

4.5.2 No cloning

The security of quantum key distribution is based on an essential differ-
ence between quantum information and classical information. It is not
possible to acquire information that distinguishes between nonorthogonal
quantum states without disturbing the states.

For example, in the BB84 protocol, Alice sends to Bob any one of the
four states | ↑z〉| ↓z〉| ↑x〉| ↓x〉, and Alice and Bob are able to verify that
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none of their states are perturbed by Eve’s attempt at eavesdropping.
Suppose, more generally, that |ϕ〉 and |ψ〉 are two nonorthogonal states
in H (〈ψ|ϕ〉 6= 0) and that a unitary transformationU is applied to H⊗HE

(where HE is a Hilbert space accessible to Eve) that leaves both |ψ〉 and
|ϕ〉 undisturbed. Then

U : |ψ〉 ⊗ |0〉E → |ψ〉 ⊗ |e〉E ,

|ϕ〉 ⊗ |0〉E → |ϕ〉 ⊗ |f〉E , (4.104)

and unitarity implies that

〈ψ|φ〉 = (E〈0| ⊗ 〈ψ|)(|ϕ〉⊗ |0〉E)

= (E〈e| ⊗ 〈ψ|)(|ϕ〉⊗ |f〉E)

= 〈ψ|ϕ〉〈e|f〉 . (4.105)

Hence, for 〈ψ|ϕ〉 6= 0, we have 〈e|f〉 = 1, and therefore since the states
are normalized, |e〉 = |f〉. This means that no measurement in HE can
reveal any information that distinguishes |ψ〉 from |ϕ〉. In the BB84 case
this argument shows that, if Eve does not disturb the states sent by Alice,
then the state in HE is the same irrespective of which of the four states
| ↑z〉, | ↓z〉, | ↑x〉, | ↓x〉 is sent by Alice, and therefore Eve learns nothing
about the key shared by Alice and Bob. On the other hand, if Alice is
sending to Bob one of the two orthogonal states | ↑z〉 or | ↓z〉, there is
nothing to prevent Eve from acquiring a copy of the information (as with
classical bits).

We have noted earlier that if we have many identical copies of a qubit,
then it is possible to measure the mean value of noncommuting observ-
ables like σ1,σ2, and σ3 to completely determine the density matrix of
the qubit. Inherent in the conclusion that nonorthogonal state cannot
be distinguished without disturbing them, then, is the implicit provision
that it is not possible to make a perfect copy of a qubit. (If we could,
we would make as many copies as we need to find 〈σ1〉, 〈σ2〉, and 〈σ3〉 to
any specified accuracy.) Let’s now make this point explicit: there is no
such thing as a perfect quantum Xerox machine.

Orthogonal quantum states (like classical information) can be reliably
copied. For example, the unitary transformation that acts as

U : |0〉A|0〉E → |0〉A|0〉E ,

|1〉A|0〉E → |1〉A|1〉E , (4.106)

copies the first qubit onto the second if the first qubit is in one of the
states |0〉A or |1〉A. But if instead the first qubit is in the state |ψ〉 =
a|0〉A + b|1〉A, then

U : (a|0〉A + b|1〉A)|0〉E
→ a|0〉A|0〉E + b|1〉A|1〉E . (4.107)
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This is not the state |ψ〉 ⊗ |ψ〉 (a tensor product of the original and the
copy); rather it is something very different – an entangled state of the
two qubits.

To consider the most general possible quantum Xerox machine, we allow
the full Hilbert space to be larger than the tensor product of the space of
the original and the space of the copy. Then the most general “copying”
unitary transformation acts as

U : |ψ〉A|0〉E|0〉F → |ψ〉A|ψ〉E|e〉F
|ϕ〉A|0〉E|0〉F → |ϕ〉A|ϕ〉E|f〉F . (4.108)

Unitarity then implies that

〈ψ|ϕ〉 = 〈ψ|ϕ〉〈ψ|ϕ〉〈e|f〉 ; (4.109)

therefore, if 〈ψ|ϕ〉 6= 0, then

1 = 〈ψ|ϕ〉〈e|f〉. (4.110)

Since the states are normalized, we conclude that

|〈ψ|ϕ〉| = 1, (4.111)

so that |ψ〉 and |ϕ〉 actually represent the same ray. No unitary ma-
chine can make a copy of both |ϕ〉 and |ψ〉 if |ϕ〉 and |ψ〉 are distinct,
nonorthogonal states. This result is called the no-cloning theorem.

4.6 Mixed-state entanglement

The crucial property of quantum entanglement is that it cannot be created
locally. Up to now in this chapter we have limited our attention to the
properties of entangled pure states, but it is important to recognize that
mixed states can be entangled, too.

Recall that a bipartite pure state |Ψ〉AB is separable if and only if it
is a product state |Ψ〉AB = |α〉A ⊗ |β〉B. We say that a bipartite mixed
state ρAB is separable if and only if it can be realized as an ensemble of
separable pure states,

ρAB =
∑

i

pi (|αi〉〈αi|)A ⊗ (|βi〉〈βi|)B , (4.112)

where the pi’s are positive and sum to one. Alternatively, we may say
that ρAB is separable if and only if it can be expressed as

ρAB =
∑

i,j

pijρA,i ⊗ ρB,j , (4.113)
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where each ρA,i and ρB,j is a density operator, and the pij’s are positive
and sum to one. Thus if a state is separable, the correlations between the
state of part A and the state of part B are entirely classical, and embodied
by the joint probability distribution pij. The two criteria eq. (4.112) and
eq. (4.113) are equivalent because ρA,i and ρB,j can be realized as an
ensemble of pure states.

Of course, it may be possible to realize a separable mixed state as an
ensemble of entangled pure states as well. A simple example is that the
random state ρ = 1

4I ⊗ I of two qubits can be expressed as either

ρ =
1

4
(|00〉〈00|+ |01〉〈10|+ |10〉〈01|+ |11〉〈11|)

(4.114)

(an ensemble of product states) or

ρ =
1

4

(

|φ+〉〈φ+|+ |φ−〉〈φ−| + |ψ+〉〈ψ+|+ |ψ−〉〈ψ−|
)

(4.115)

(an ensemble of maximally entangled states). The state is separable if
and only if there is some way to represent is as an ensemble of product
states. As for a pure state, if a mixed state is not separable, we say that
it is inseparable or entangled.

Consider two distantly separated parties Alice and Bob who carry out a
protocol involving local operations and classical communication. That is,
Alice is permitted to perform quantum operations on her system A, Bob
is permitted to perform quantum operations on his system B, and Alice
and Bob are permitted to exchange classical bits as many times as they
want. But no exchange of qubits is permitted. Then if Alice and Bob
share a separable state to start with, their state will still be separable at
the end of the protocol. The reason is that neither a local operation nor
exchange of a classical bit can increase the Schmidt number of a bipartite
pure state from the value 1 to a value greater than 1. Of course, Alice
and Bob might have a mixed state, but in each step of the protocol an
ensemble of product states is transformed to another ensemble of product
states. Alice and Bob cannot create entanglement locally if they have
none to begin with. In discussions of entanglement, the concept of a
protocol that uses only Local Operations and Classical Communication is
so prevalent that we will find it convenient to use the abbreviation LOCC.

On the other hand, with LOCC, Alice and Bob can prepare any separa-
ble state. To prepare ρAB in eq. (4.112), Alice generates random numbers
to sample the probability distribution {pi}; if outcome i is found, she in-
forms Bob, and Alice prepares the |αi〉A while Bob prepares |βi〉B.
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4.6.1 Positive-partial-transpose criterion for separability

Now, consider a bipartite density operator ρAB on HA ⊗ HB , presented
as (say) a matrix in some basis. We would like to know whether ρAB is
separable. How do we decide? It is not obvious how to devise an efficient
algorithm that will definitively answer whether ρAB can be realized as an
ensemble of product states. However, it is useful to note that there are
necessary conditions for separability that are easy to check.

Recall that relative to a specified orthonormal basis {|i〉} for a Hilbert
space H, a transpose operation T can be defined — the transpose acts on
a basis for the linear operators according to

T : |i〉〈j| → (|i〉〈j|)T = |j〉〈i| ; (4.116)

its action on a matrix Mij expressed in this basis is
(

MT
)

ij
= Mji . (4.117)

Evidently transposition preserves the trace of the matrix M . If M is
Hermitian, then its transpose is its complex conjugate, which has the
same (real) eigenvalues. Therefore, the transpose of a density operator is
another density operator with the same eigenvalues — the transpose is a
trace-preserving positive map.

But we saw in §3.?? that the transpose, although positive, is not com-
pletely positive; that is, the partial transpose I ⊗ T can map a bipartite
positive operator to an operator that is not positive. For example, the
maximally entangled state

|Φ〉 =
1√
N

N−1
∑

i=0

|i〉A ⊗ |i〉B (4.118)

has density operator

ρ =
1

N

∑

i,j

|ii〉〈jj| . (4.119)

Its partial transpose is

(I ⊗ T )(ρ) =
1

N

∑

i,j

|ij〉〈ji|= 1

N
(SWAP) ; (4.120)

the SWAP operator has eigenstates with eigenvalue +1 (symmetric states)
and eigenstates with eigenvalue −1 (antisymmetric states) — hence it is
not positive. We will use the notation

ρPT = (I ⊗ T )(ρ) (4.121)
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for the partial transpose of the bipartite density operator ρ.
While the partial transpose is not a positive map in general, it is positive

acting on separable states. The partial transpose of ρAB in eq. (4.113) is

ρPT
AB =

∑

i,j

pijρA,i ⊗ ρT
B,j ; (4.122)

since ρT
B,j is a density operator, so is ρPT

AB . Thus we arrive at a useful
necessary condition for separability.

Positive partial-transpose criterion for separability: If ρAB is separa-
ble, then ρPT

AB
is nonnegative.

We will say that a bipartite density operator is PPT (for “positive partial
transpose) if its partial transpose is nonnegative.

Thus, if we are presented with a density operator ρAB, we may compute
the eigenvalues of ρPT

AB; if negative eigenvalues are found, then ρAB is
known to be inseparable. But because the PPT condition is necessary
but not sufficient for separability, if ρPT

AB is found to be nonnegative,
then whether ρAB is separable remains unsettled. The PPT criterion is
sometimes called the Peres-Horodecki criterion for separability.

Let’s apply the PPT criterion to a two-qubit state of the form

ρ(λ) = λ|φ+〉〈φ+|+ 1

4
(1− λ)I . (4.123)

This state may also be expressed as

ρ(F ) = F |φ+〉〈φ+|

+
1

3
(1 − F )

(

|φ−〉〈φ−| + |ψ+〉〈ψ+| + |ψ−〉〈ψ−|
)

,(4.124)

where (1−F ) = 3
4 (1−λ), and as we saw in §3.??, it results from subjecting

half of the state |φ+〉 to the depolarizing channel with error probability
p = 1−F . This state is sometimes called a Werner state with fidelity F .

Now
(

|φ+〉〈φ+|
)PT

=
1

2
(SWAP) =

1

2
I − |ψ−〉〈ψ−| ,

(4.125)

where the second equality follows from the property that |φ±〉, |ψ+〉 (which
are symmetric) are eigenvalues of SWAP with eigenvalue 1, and |ψ−〉
(which is antisymmetric) is an eigenstate of SWAP with eigenvalue −1.
Since also IPT = I, we see that the partial transpose of a Werner state is

ρ(λ)PT = λ
(1

2
I − |ψ−〉〈ψ−|

)

+
1

4
(1 − λ)I

=
1

4
(1 + λ)I − λ|ψ−〉〈ψ−| . (4.126)
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This operator has a negative eigenvalue if λ > 1/3, and we conclude that
the Werner state is inseparable for λ > 1/3. Therefore, if half of the
maximally entangled state |φ+〉 is subjected to the depolarizing channel
with error probability p < 1/2, the resulting state remains entangled.

Although we won’t prove it here, it turns out that for the case of two-
qubit states, the PPT criterion is both necessary and sufficient for sepa-
rability. Thus the Werner state with λ < 1/3 (or F < 1/2) is separable.

While we found that a bipartite pure state is entangled if and only if
it violates some Bell inequality, this equivalence does not hold for mixed
states. You will show in Exercise 4.?? that for a Werner state with
λ = 1/2 (or any smaller value of λ) there is a local hidden-variable theory
that fully accounts for the correlations between measurements of Alice’s
qubit and Bob’s. Thus, Werner states with 1/3 < λ < 1/2 are inseparable
states that violate no Bell inequality.

Oddly, though a Werner state with 1/3 < λ < 1/2 is not Bell-inequality
violating, it is nonetheless a shared resource more powerful than classical
randomness. You will also show in Exercise 4.?? that by consuming a
Werner state Alice and Bob can teleport a qubit in an unknown state
with fidelity

Fteleport =
1

2
(1 + λ) . (4.127)

This fidelity exceeds the maximal fidelity Fteleport = 2/3 that can be
achieved without any shared entanglement, for any λ > 1/3 — that is,
for any inseparable Werner state, whether Bell-inequality violating or not.
Even if well described by local hidden variables, an entangled mixed state
can be useful.

It seems rather strange that shared entangled states described by local
hidden-variable theory should be a more powerful resource than classical
shared randomness. Further observations to be discussed in §5.?? will
deepen our grasp of the situation. There we will find that if Alice and
Bob share many copies of the Werner state ρ(λ) with 1/3 < λ < 1/2,
then while local hidden variables provide an adequate description of the
correlations if Alice and Bob are restricted to measuring the pairs one at

a time, violations of Bell inequalities still arise if they are permitted to
perform more general kinds of measurements. These observations illus-
trate that mixed-state entanglement is a surprisingly subtle and elusive
concept.

4.7 Nonlocality without entanglement

Quantum entanglement typifies the principle that there are bipartite
quantum operations that cannot be implemented using only local op-
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erations and classical communication (LOCC). For example, if Alice and
Bob share no prior entanglement, they cannot perform Bell measurement
or prepare the entangled state |φ+〉AB unless they get together. Now we
will encounter an interesting surprise: some things that Alice and Bob
are unable to do with LOCC do not involve quantum entanglement, at
least not directly.

Consider a game played by Alice, Bob, and Charlie. Charlie prepares a
state |ψi〉AB selected from an ensemble of mutually orthogonal bipartite
states, and distributes |ψi〉AB to Alice and Bob. To win the game, Alice
and Bob must identify the state that Charlie prepared. Of course, if Alice
and Bob were permitted to unite, they could perform an orthogonal mea-
surement that would identify the state with certainty, and they would be
able to win every time. But the rules of the game require Alice and Bob to
stay separated, and they are forbidden to exchange quantum information
— only LOCC is allowed. Thus, if Charlie’s ensemble includes entangled
states, Alice and Bob won’t be able to win in general.

To make things easier for Alice and Bob, let’s impose a new rule: Char-
lie is required to prepare a product state

|ψ〉AB = |αi〉A ⊗ |βi〉B . (4.128)

Now, since Alice has a pure state, and so does Bob, we might expect them
to be able to devise a winning strategy. But on further reflection, this
is not so obvious. Though the states {|ψi〉AB} in Charlie’s ensemble are
mutually orthogonal, the states {|αi〉A} that Alice could receive need not
be mutually orthogonal, and the same is true of the states {|βi〉B} that
Bob could receive.

Indeed, even under the new rules, there is no winning strategy for Alice
and Bob in general. Though Charlie sends a pure state to Alice and a
pure state to Bob, there is no way for Alice and Bob, using LOCC, to fully
decipher the message that Charlie has sent to them. This phenomenon is
called nonlocality without entanglement.

The best way to understand nonlocality without entanglement is to con-
sider an example. Suppose that Alice and Bob share a pair of qutrits (3-
level quantum systems), and denote the three elements of an orthonormal
basis for the qutrit by {|0〉, |1〉, |2〉}. In a streamlined notation, Charlie’s
ensemble of nine mutually orthogonal states is

|ψ〉1,2 = |0, 0± 1〉 ,
|ψ〉3,4 = |0 ± 1, 2〉 ,
|ψ〉5,6 = |2, 1± 2〉 ,
|ψ〉7,8 = |1 ± 2, 0〉 ,
|ψ〉9 = |1, 1〉 . (4.129)
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(Here, |0, 0± 1〉 denotes |0〉A ⊗ 1√
2
(|0〉B ± |1〉B), etc.) For ease of visual-

ization, it is very convenient to represent this basis pictorially, as a tiling
of a square by rectangles:

2

1

0

0 1 2

Bob

Alice

|ψ1,2〉
|ψ3,4〉

|ψ7,8〉
|ψ9〉

|ψ5,6〉

In the picture, the mutual orthogonality of the elements of Charlie’s basis
is reflected in the property that the rectangles are nonoverlapping.

When Charlie prepares one of these 9 states and distributes it, Alice
receives one of the states

|0〉, |1〉, |2〉, |0± 1〉, |1± 2〉 , (4.130)

and similarly for Bob. These states are not mutually orthogonal, and so
cannot be perfectly distinguished by the recipient.

For example, Alice might perform an incomplete orthogonal measure-
ment that distinguishes the state |2〉 from its orthogonal complement.
Pictorially, this measurement “cuts” the square into two nonoverlapping
parts. If Charlie prepared one of |ψ5,6〉, |ψ7,8〉, then Alice’s outcome could
be |2〉〈2|; in that case the state prepared by her measurement can be
represented as:

2

0 1 2

Bob

Alice |ψ7,8〉 |ψ5,6〉

After learning Alice’s measurement outcome, Bob can perform an orthog-
onal measurement that projects on the basis

{|0〉, |1+ 2〉, |1− 2〉} . (4.131)
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If his outcome is |1 + 2〉 or |1 − 2〉, then Alice and Bob have successfully
identified Charlie’s state as |ψ5〉 or |ψ6〉. But if Bob’s outcome is |0〉, then
Alice and Bob remain uncertain whether Charlie prepared |ψ7〉 of |ψ8〉. On
the other hand, if Charlie prepared one of |ψ1,2〉, |ψ3,4〉, |ψ7,8〉, |ψ9〉, then
Alice’s outcome could be |0〉〈0|+ |1〉〈1|; in that case the state prepared
by her measurement can be represented as:

1

0

0 1 2

Bob

Alice

|ψ1,2〉
|ψ3,4〉

|ψ7,8〉 |ψ9〉

Once again, Alice and Bob have lost any hope of distinguishing |ψ7〉 from
|ψ8〉, but in a few more rounds of LOCC, they can successfully identify
any of the other five states. Bob projects onto |2〉 or its complement; if he
finds |2〉〈2|, then Alice projects onto |0 ± 1〉 to complete the protocol. If
Bob’s outcome is |0〉〈0|+ |1〉〈1|, then Alice projects onto {|0〉, |1〉}; finally
Bob measures in either the |0±1〉 basis (if Alice found |0〉) or the {|0〉, |1〉}
basis (if Alice found |1〉).

By choosing one of nine mutually orthogonal product states, Charlie
has sent two trits of classical information to Alice and Bob. But their
LOCC protocol, which fails to distinguish |ψ7〉 from |ψ8〉, has not been
able to recover all of the information in Charlie’s message. Of course, this
is just one possible protocol, but one can prove (we won’t here) that no
LOCC protocol can extract two trits of classical information. The trouble
is that with LOCC, Alice and Bob cannot fully “dissect” the square into
nonoverlapping rectangles. This is nonlocality without entanglement.

4.8 Multipartite entanglement

Up until now, we have mostly limited our attention to quantum states
shared by two parties. We will conclude this chapter with some obser-
vations about the properties of entanglement shared by three or more
parties: multipartite entanglement.

Consider for example the case of a pure state |ψ〉A1,A2,...An
shared by

n parties A1, A2, . . .An, and suppose that there is no way to divide the
parties into two smaller camps, where each camp shares a pure state.
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Thus the state is entangled, and furthermore, it can’t be expressed as a
product of states each involving fewer than n parties. Hence we might
say that the state exhibits n-party entanglement. If the parties start out
with an n-fold product state |ψ1〉A1

⊗ |ψ2〉A2
⊗ · · · |ψn〉An

, then there is
no way for them to assemble the state |ψ〉A1,A2,...An

using LOCC alone —
quantum communication is required. Indeed, no matter how we divide
the n parties into two subsystems A and B, quantum communication
between A and B is needed.

What if we disallow quantum communication, but we do equip the
parties with pairwise entanglement that has been established in advance?
Then for the purpose of constructing the state |ψ〉A1,A2,...An

, it clearly
sufficies for the first party A1 to share bipartite entanglement with each
of the other n−1 parties. PartyA1 can build the state |ψ〉A1,A2,...An

in her
own laboratory, and then teleport the corresponding share of the state to
each of the n−1 other parties. In this sense, then, bipartite entanglement
and LOCC is as powerful a resource as multiparty entanglement.

Nonetheless, multipartite entangled states exhibit some qualitatively
new phenomena that we don’t encounter in the study of bipartite entan-
glement, such as nonprobabilistic tests of Einstein locality, and entanglement-
enhanced multiparty communication.

4.8.1 Three quantum boxes

In the wake of the wildly successful experiment with the three coins on
the table, Alice and Bob are now world famous. They are both tenured
professors, Alice at Caltech, and Bob at Chicago. They are much too
important to spend much time in the lab, but they have many graduate
students and remain scientifically active.

Their best student, Charlie, who did all the hard work on the coin
experiment, has graduated and is now an assistant professor at Princeton.
Alice and Bob would like to nurture Charlie’s career, and help him earn
tenure. One day, Alice and Bob are chatting on the phone:

Alice: You know, Bob, we really ought to help Charlie. Can you think
of a neat experiment that the three of us can do together?

Bob: Well, I dunno, Alice. There are a lot of experiments I’d like to do
with our entangled pairs of qubits. But in each experiment, there’s
one qubit for me and one for you. It looks like Charlie’s the odd
man out.

Alice: [Long pause] Bob . . . . Have you ever thought of doing an exper-
iment with three qubits?
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Bob’s jaw drops and his pulse races. In a sudden epiphany, his whole
future career seems mapped out before him. Truth be told, Bob was
beginning to wonder if pairs of qubits were getting to be old hat. Now
he knows that for the next five years, he will devote himself slavishly to
performing the definitive three-qubit experiment. By that time, he, Alice,
and Charlie will have trained another brilliant student, and will be ready
for a crack at four qubits. Then another student, and another qubit. And
so on to retirement.

Here is the sort of three-qubit experiment that Alice and Bob decide
to try: Alice instructs her technician in her lab at Caltech to prepare
carefully a state of three quantum boxes. (But Alice doesn’t know exactly
how the technician does it.) She keeps one box for herself, and she ships
the other two by quantum express, one to Bob and one to Charlie. Each
box has a ball inside that can be either black or white, but the box is
sealed tight shut. The only way to find out what is inside is to open the
box, but there are two different ways to open it — the box has two doors,
clearly marked X and Y . When either door opens, a ball pops out whose
color can be observed. It isn’t possible to open both doors at once.

Alice, Bob, and Charlie decide to study how the boxes are correlated.
They conduct many carefully controlled trials. Each time, one of the
three, chosen randomly, opens door X, while the other two open door
Y. Lucky as ever, Alice, Bob, and Charlie make an astonishing discovery.
They find that every single time they open the boxes this way, the number
of black balls they find is always odd.

That is, Alice, Bob and Charlie find that when they open door X on
one box and door Y on the other two, the colors of the balls in the boxes
are guaranteed to be one of

0A0B1C , 0A1B0C , 1A0B0C , 1A1B1C ,
(4.132)

(0 for white, 1 for black); They never see any of

1A1B0C , 1A0B1C , 0A1B1C , 0A0B0C .
(4.133)

It makes no difference which of the three boxes is opened through door
X .

After a while, Alice, Bob, and Charlie catch on that after opening two
of the boxes, they can always predict what will happen before they open
the third box. If the first two balls are the same color, the last ball is sure
to be black, and if the first two are different colors, the last ball is sure
to be white. They’ve tried it a zillion times, and it always works!
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Even after all the acclaim showered upon the three-coin experiment,
Alice, Bob, and Charlie have never quite shaken their attachment to Ein-
stein locality. One day they are having a three-way conference call:

Alice: You know, guys, sometimes I just can’t decide whether to open
door X or door Y of my box. I know I have to choose carefully . . .
If I open door X , that’s sure to disturb the box; so I’ll never know
what would have happened if I had opened door Y instead. And
if I open door Y , I’ll never know what I would have found if I had
opened door X . It’s frustrating!

Bob: Alice, you’re so wrong! Our experiment shows that you can have
it both ways. Don’t you see? Let’s say that you want to know what
will happen when you open door X . Then just ask Charlie and me
to open door Y of our boxes and to tell you what we find. You’ll
know absolutely for sure, without a doubt, what’s going to happen
when you open door X . We’ve tested that over and over again, and
it always works. So why bother to open door X? You can go ahead
and open door Y instead, and see what you find. That way, you
really do know the result of opening both doors!

Charlie: But how can you be sure? If Alice opens door Y , she passes
up the opportunity to open door X . She can’t really ever have it
both ways. After she opens door Y , we can never check whether
opening door X would have given the result we expected.

Bob: Oh come on, how can it be otherwise? Look, you don’t really
believe that what you do to your box in Princeton and I do to mine
in Chicago can exert any influence on what Alice finds when she
opens her box in Pasadena, do you? When we open our boxes, we
can’t be changing anything in Alice’s box; we’re just finding the
information we need to predict with certainty what Alice is going
to find.

Charlie: Well, maybe we should do some more experiments to find out
if you’re right about that.

Indeed, the discovery of the three-box correlation has made Alice and
Bob even more famous than before, but Charlie hasn’t gotten the credit
he deserves — he still doesn’t have tenure. No wonder he wants to do
more experiments! He continues:

Charlie: Here’s something we can try. In all the experiments we’ve
done up to now, we have always opened door Y on two boxes and
door X on the other box. Maybe we should try something different.
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Like, maybe we should see what happens if we open the same door
on all three boxes. We could try opening three X doors.

Bob: Oh, come on! I’m tired of three boxes. We already know all about
three boxes. It’s time to move on, and I think Diane is ready to
help out. Let’s do four boxes!

Alice: No, I think Charlie’s right. We can’t really say that we know
everything there is to know about three boxes until we’ve experi-
mented with other ways of opening the doors.

Bob: Forget it. They’ll never fund us! After we’ve put all that effort
into opening two Y ’s and an X , now we’re going to say we want to
open three X ’s? They’ll say we’ve done whiffnium and now we’re
proposing whaffnium . . . We’ll sound ridiculous!

Alice: Bob has a point. I think that the only way we can get funding
to do this experiment is if we can make a prediction about what
will happen. Then we can say that we’re doing the experiment to
test the prediction. Now, I’ve heard about some theorists named
Greenberger, Horne, Zeilinger, and Mermin (GHZM). They’ve been
thinking a lot about our three-box experiments; maybe they’ll be
able to suggest something.

Bob: Well, these boxes are my life, and they’re just a bunch of theorists.
I doubt that they’ll have anything interesting or useful to say. But
I suppose it doesn’t really matter whether their theory makes any
sense . . . If we can test it, then even I will accept that we have a
reason for doing another three-box experiment.

And so it happens that Alice, Bob, and Charlie make the pilgrimage
to see GHZM. And despite Bob’s deep skepticism, GHZM make a very
interesting suggestion indeed:

GHZM: Bob says that opening a box in Princeton and a box in Chicago
can’t possibly have any influence on what will happen when Alice
opens a box in Pasadena. Well, let’s suppose that he’s right. Now
you guys are going to do an experiment in which you all open your
X doors. No one can say what’s going to happen, but we can reason
this way: Let’s just assume that if you had opened three Y doors,
you would have found three white balls. Then we can use Bob’s
argument to see that if you open three X doors instead, you will
have to find three black balls. It goes like this: if Alice opens X ,
Bob opens Y , and Charlie opens Y , then you know for certain that
the number of black balls has to be odd. So, if we know that Bob
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and Charlie both would find white when they open door Y , then
Alice has to find black when she opens door X . Similarly, if Alice
and Charlie both would find white when they open Y , then Bob has
to find black when he opens X , and if Alice and Bob both would
find white when they open Y , then Charlie must find black when
he opens X . So we see that§

YAYBYC = 000 −→ XAXBXC = 111 . (4.134)

Don’t you agree?

Bob: Well, maybe that’s logical enough, but what good is it? We don’t
know what we’re going to find inside a box until we open it. You’ve
assumed that we know YAYBYC = 000, but we never know that
ahead of time.

GHZM: Sure, but wait. Yes, you’re right that we can’t know ahead of
time what we would find if we opened door Y on each box. But
there are only eight possibilities for three boxes, and we can easily
list them all. And for each of those eight possibilities for YAYBYC we
can use the same reasoning as before to infer the value of XAXBXC .
We obtain a table, like this:

YAYBYC = 000 −→ XAXBXC = 111

YAYBYC = 001 −→ XAXBXC = 001

YAYBYC = 010 −→ XAXBXC = 010

YAYBYC = 100 −→ XAXBXC = 100

YAYBYC = 011 −→ XAXBXC = 100

YAYBYC = 101 −→ XAXBXC = 010

YAYBYC = 110 −→ XAXBXC = 001

YAYBYC = 111 −→ XAXBXC = 111 (4.135)

Bob: Okay, but so what?

GHZM: There’s something interesting about the table, Bob! Look at
the values for XAXBXC . . . Every single entry has an odd number
of 1’s. That’s our prediction: when you all open door X on your
boxes, you’ll always find an odd number of black balls! Could be
one, or could be three, but always odd.

Naturally, Alice, Bob, and Charlie are delighted by this insight from
GHZM. They proceed to propose the experiment, which is approved and

§ Here 0 stands for white and 1 stands for black; YA is what Alice finds when she opens
door Y on her box, and so on.
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generously funded. Finally the long awaited day arrives when they are to
carry out the experiment for the first time. And when Alice, Bob, and
Charlie each open door X on their boxes, can you guess what they find?
Three white balls. Whaaaa??!!

Suspecting an error, Alice and Bob and Charlie repeat the experiment,
very carefully, over and over and over again. And in every trial, every
single time, they find an even number of black balls when they open door
X on all three boxes. Sometimes none, sometimes two, but never one
and never three. What they find, every single time, is just the opposite
of what GHZM had predicted would follow from the principle of Einstein
locality!

Desperation once again drives Alice, Bob, and Charlie into the library,
seeking enlightenment. After some study of a quantum mechanics text-
book, and a thorough interrogation of Alice’s lab technician, they realize
that their three boxes had been prepared in a GHZM quantum state

|ψ〉ABC =
1√
2

(|000〉ABC + |111〉ABC) , (4.136)

a simultaneous eigenstate with eigenvalue one of the three observables

ZA ⊗ ZB ⊗ IC , IA ⊗ ZB ⊗ ZC , XA ⊗ XB ⊗ XC .
(4.137)

And since ZX = iY , they realize that this state has the properties

Y A ⊗ Y B ⊗ XC = −1

XA ⊗ Y B ⊗ Y C = −1

Y A ⊗ XB ⊗ Y C = −1

XA ⊗ XB ⊗ XC = 1 . (4.138)

In opening the box through door X or door Y , Alice, Bob, and Charlie
are measuring the observable X or Y , where the outcome 1 signifies a
white ball, and the outcome −1 a black ball. Thus if the three qubit state
eq. (4.136) is prepared, eq. (4.138) says that an odd number of black balls
will be found if door Y is opened on two boxes and door X on the third,
while an even number of black balls will be found if door X is opened
on all three boxes. This behavior, unambiguously predicted by quantum
mechanics, is just what had seemed so baffling to Alice, Bob, and Charlie,
and to their fellow die-hard advocates of Einstein locality.

After much further study of the quantum mechanics textbook, Alice,
Bob, and Charlie gradually come to recognize the flaw in their reasoning.
They learn of Bohr’s principle of complementarity, of the irreconcilable
incompatibility of noncommuting observables. And they recognized that
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to arrive at their prediction, they had postulated an outcome for the
measurement of Y Y Y , and then proceeded to infer the consequences for
a measurement of XXX . By failing to heed the insistent admonitions of
Niels Bohr, they had fallen prey to the most pernicious of fallacies.

As they had hoped, the experiment of the three boxes brings even
further acclaim to Alice and Bob, and tenure to Charlie. Of course,
the three-coin experiment had already convincingly struck down Einstein
locality; even so, the three-box experiment had a different character. In
the coin experiment, Alice and Bob could uncover any two of the three
coins, finding any one of four possible configurations: HH , HT , TH , TT .
Only by carrying out many trials could they amass a convincing statistical
case for the violation of the Bell inequality. In contrast, in the three-box
experiment, Alice, Bob, and Charlie had found a result inconsistent with
Einstein locality in every single trial in which they opened door X on all
three boxes!

4.8.2 Cat states

The GHZM state studied by Alice, Bob, and Charlie is a natural three-
qubit generalization of the maximally entangled Bell pair. A Bell pair
can be characterized as the simultaneous eigenstate of the two commuting
operators ZZ, whose eigenvalue is the “parity bit” of the pair, and XX ,
whose eigenvalue is the phase bit. (Here we use a compressed notation in
which the tensor product symbol ⊗ is suppressed — e.g., XX denotes the
operator that simultaneously applies X to both Alice’s qubit and Bob’s.)
The GHZM state is the simultaneous eigenstate of ZZI , IZZ, andXXX .

An n-qubit generalization of the GHZM state can be defined, which is
the simultaneous eigenstate of the n commuting operators

ZZIII . . . I ,

IZZII . . . I ,

IIZZI . . . I ,

. . .

III . . . IZZ ,

XX . . .XX . (4.139)

Each such simultaneous eigenstate has the form

1√
2

(

|x〉 ± |¬x〉
)

, (4.140)

where ¬x denotes the complement of the binary string x. Since for large n
this state is a coherent superposition of two “macroscopically distinguish-
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able” states, it is called an n-qubit cat state, in homage to Schrödinger’s
cat. The n-qubit cat state has n− 1 parity bits, and just one phase bit.

Some noteworthy properties of cat states are:

• Each qubit is maximally entangled with the rest. That is, if we trace
over the other n− 1 qubits, the qubit’s density operator is ρ = 1

2I.
For this reason, it is sometimes said that a cat state is a maximally
entangled state of n qubits.

• But this is a rather misleading locution. Because its parity and phase
bits are treated quite asymmetrically, the cat is not so profoundly
entangled as some other multiqubit states that we will encounter in
Chapter 7. For example, for the cat state with x = 000 . . .0, if we
trace over n − 2 qubits, the density operator of the remaining two
is

ρ2−qubit =
1

2

(

|00〉〈00|+ |11〉〈11|
)

, (4.141)

which has rank two rather than four. Correspondingly, we can ac-
quire a bit of information about a cat state (one of its parity bits)
by observing only two of the qubits in the state. Other multiqubit
states, which might be regarded as more highly entangled than cat
states, have the property that the density operator of two (or more)
qubits is proportional to the identity, if we trace over the rest.

• Suppose that Charlie prepares one of the 2n possible cat states and
distributes it to n parties. Using LOCC, the parties can determine
all n − 1 parity bits of the state — each pary measures Z and all
broadcast their results. But by measuring Z they destroy the phase
bit. Alternatively, they can all measure X to determine the phase
bit, but at the cost of destroying all the parity bits.

• Each party, by applying one of {I,X,Y ,Z} can transform a given
cat state to any one of four other cat states; that is, the party
can modify the phase bit and one of the n − 1 parity bits. All n
parties, working together, can transform one cat state to any one of
the 2n mutually orthogonal cat states; for example, one party can
manipulate the phase bit while each of the the other n − 1 parties
controls a parity bit.

• If the parties unite, the phase bit and all parity bits can be simulta-
neously measured.

If the parties start out with a product state, the three-qubit cat state
(for example) can be prepared by executing the quantum circuit:
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phase bit (0, 1)

parity bits x̃

1√
2

(

|0, x̃〉 ± |1, x̃〉
)

H u
i

u

i

For the n-party case, a similar circuit with n − 1 CNOT gates does the
job. Thus, to prepare the state, it suffices for the first party to visit each
of the other n − 1 parties. By running the circuit in reverse, a cat state
can be transformed to a product state that can be measured locally.

4.8.3 Entanglement-enhanced communication

An intriguing property of the n-qubit cat state is that its phase bit can
be manipulated by each one of the n parties that share the state. One
wonders how this shared resource might be exploited.

We will describe a setting in which possession of a cat state reduces the
amount of communication that is required to accomplish a distributed
information processing task. Suppose that each one of n parties labeled
by index i = 1, 2, 3, . . . , n resides on a separate planet, and that party i
possesses some data (a string of bits xi) known only to that party. The
goal of the parties is to compute a function f (with a one-bit output) that
depends on all the data:

f(x1, x2, x3, . . . , xn) ∈ {0, 1} . (4.142)

In this universe, computation is cheap, and communication is expensive.
Each party has unlimited computational power at her disposal, but since
no party knows the full input of the function f , no one can compute
f unless the parties communicate. For this purpose, they are equipped
with a broadcast channel — if any party speaks, all the others can hear
her. However, use of the broadcast channel is very expensive, so that the
parties wish to compute f while making minimal use of the channel.

With this motivation, we define the classical communication complexity

CCC[f ] of the function f :

CCC[f ]= the minimum of bits that must be broadcast (in the worst
case) for all the parties to know the value of f(x1, x2, x3, . . . , xn).

Here “in the worst case” means that we maximize the number of bits
of communication required over all possible values for the input strings
x1, x2, x3, . . . , xn.
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We are interested in whether using quantum information can reduced
the amount of communication required to compute a function. Hence
we contrast the function’s classical communication complexity with its
quantum communication complexity. There are actually several different
natural ways to generalize a classical communication setting to a quantum
setting. In one, to which we return in Chapter 6, the parties are allowed
to exchange qubits instead of classical bits. Here, we consider a scenario
in which all communication is via the classical broadcast channel, but the
parties are allowed to share entangled states that have been prepared in
advance, and to manipulate their shared entanglement locally. Thus we
define the quantum communication complexity QCC[f ] as

QCC[f ]= the minimum of bits that must be broadcast (in the worst
case) for all the parties to know the value of f(x1, x2, x3, . . . , xn),
where the parties are permitted to share prior quantum entanglement.

One way to argue that multipartite entanglement can be a useful resource
is to establish that there are functions f such that

QCC[f ] < CCC[f ] . (4.143)

Here is an example of such a function: Each party holds anm-bit string,
and they are to compute

n
∑

i=1

xi (mod 2m) . (4.144)

Except that they have been promised that the answer is either 0 or 2m−1;
therefore, their function has just a one-bit output.

First consider what strategy the parties should play if they share no
entanglement. Suppose that parties 2 through n broadcast their data,
and that the first party computes f and broadcasts the result. But note
that it is not necessary for the parties to broadcast all of their bits, since
some of the bits cannot affect the answer. Indeed, the k least significant
bits are irrelevant as long as

(n − 1)
(

2k − 1
)

< 2m−1 , (4.145)

which is satisfied provided that

(n− 1)2k ≤ 2m−1 . (4.146)

It suffices then, for parties 2 through n to broadcast their m − k most
significant bits, where

m− k ≥ log2(n− 1) + 1 ; (4.147)
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including one more bit for the first party to broadcast the answer, we
conclude that

CCC[f ] ≤ (n− 1)
(

log2(n− 1) + 1
)

+ 1 . (4.148)

In fact, this protocol is close to optimal — it can be proved that

CCC[f ] > n log2 n− n . (4.149)

But the amount of communication required can be reduced if the parties
share an n-qubit cat state, for they can imprint the answer on their shared
phase bit! Each applies to her qubit the transformation

|0〉 → |0〉 ,
|1〉 → e2πi(xi/2m)|1〉 . (4.150)

Thus the cat state

|cat〉 =
1√
2

(

|000 . . .0〉 + |111 . . .1〉
)

(4.151)

is transformed to

|cat′〉 =
1√
2

(

|000 . . .0〉 + η|111 . . .1〉
)

, (4.152)

where the phase η is

η = exp

(

2πi

(

n
∑

i=1

xi

)

/2m

)

= (−1)f(x1,x2,...,xn) .
(4.153)

Thus the fu
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4.10 Summary

Summary 1.
Summary 2.
Summary 3.

4.11 Bibliographical notes

4.12 Exercises

4.1 Hardy’s theorem
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Bob (in Boston) and Claire (in Chicago) share many identically
prepared copies of the two-qubit state

|ψ〉 =
√

(1 − 2x) |00〉+
√
x |01〉+

√
x |10〉 ,

(4.154)

where x is a real number between 0 and 1/2. They conduct many
trials in which each measures his/her qubit in the basis {|0〉, |1〉},
and they learn that if Bob’s outcome is 1 then Claire’s is always 0,
and if Claire’s outcome is 1 then Bob’s is always 0.

Bob and Claire conduct further experiments in which Bob measures
in the basis {|0〉, |1〉} and Claire measures in the orthonormal basis
{|ϕ〉, |ϕ⊥〉}. They discover that if Bob’s outcome is 0, then Claire’s
outcome is always ϕ and never ϕ⊥. Similarly, if Claire measures in
the basis {|0〉, |1〉} and Bob measures in the basis {|ϕ〉, |ϕ⊥〉}, then
if Claire’s outcome is 0, Bob’s outcome is always ϕ and never ϕ⊥.

a) Express the basis {|ϕ〉, |ϕ⊥〉} in terms of the basis {|0〉, |1〉}.

Bob and Claire now wonder what will happen if they both measure
in the basis {|ϕ〉, |ϕ⊥〉}. Their friend Albert, a firm believer in
local realism, predicts that it is impossible for both to obtain the
outcome ϕ⊥ (a prediction known as Hardy’s theorem). Albert argues
as follows:

When both Bob and Claire measure in the basis {|ϕ〉, |ϕ⊥〉}, it
is reasonable to consider what might have happened if one or
the other had measured in the basis {|0〉, |1〉} instead.

So suppose that Bob and Claire both measure in the basis
{|ϕ〉, |ϕ⊥〉}, and that they both obtain the outcome ϕ⊥. Now if
Bob had measured in the basis {|0〉, |1〉} instead, we can be cer-
tain that his outcome would have been 1, since experiment has
shown that if Bob had obtained 0 then Claire could not have
obtained ϕ⊥. Similarly, if Claire had measured in the basis
{|0〉, |1〉}, then she certainly would have obtained the outcome
1. We conclude that if Bob and Claire both measured in the
basis {|0〉, |1〉}, both would have obtained the outcome 1. But
this is a contradiction, for experiment has shown that it is not
possible for both Bob and Claire to obtain the outcome 1 if
they both measure in the basis {|0〉, |1〉}.
We are therefore forced to conclude that if Bob and Claire
both measure in the basis {|ϕ〉, |ϕ⊥〉}, it is impossible for both
to obtain the outcome ϕ⊥.
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Though impressed by Albert’s reasoning, Bob and Claire decide to
investigate what predictions can be inferred from quantum mechan-
ics.

b) If Bob and Claire both measure in the basis {|ϕ〉, |ϕ⊥〉}, what
is the quantum-mechanical prediction for the probability P (x)
that both obtain the outcome ϕ⊥?

c) Find the “maximal violation” of Hardy’s theorem: show that the
maximal value of P (x) is P [(3−

√
5)/2] = (5

√
5−11)/2 ≈ .0902.

d) Bob and Claire conduct an experiment that confirms the pre-
diction of quantum mechanics. What was wrong with Albert’s
reasoning?

4.2 Closing the detection loophole

Recall that the CHSH inequality

|〈ab〉+ 〈a′b〉+ 〈ab′〉 − 〈a′b′〉| ≤ 2 (4.155)

holds if the random variables a, b, a′b′ take values ±1 and are gov-
erned by a joint probability distribution. The maximal violation of
this inequality by the quantum-mechanical predictions occurs when
the left-hand-side is 2

√
2, which is achieved if Alice and Bob share

the maximally entangled state |φ+〉, a, a′ are measurements of Al-
ice’s qubit along axes x̂ and ẑ, and b, b′ are measurements of Bob’s
qubit along axes (x̂+ ẑ)/

√
2 and (x̂− ẑ)/

√
2.

Alice and Bob have done a beautiful experiment measuring the
polarizations of entangled photon pairs, and have confirmed the
CHSH inequality violation predicted by quantum mechanics. Al-
bert is skeptical. He points out that the detectors used by Alice
and Bob in their experiment are not very efficient. Usually, when
Alice detects a photon, Bob does not, and when Bob detects a pho-
ton, Alice does not. Therefore, they discard the data for most of
the photon pairs, and retain the results only in the case when two
photons are detected in coincidence. In their analysis of the data,
Alice and Bob assume that their results are based on a fair sample of
the probability distribution governing the measured variables. But
Albert argues that their conclusions could be evaded if whether a
photon is detected is correlated with the outcome of the polarization
measurement.

Alice and Bob wonder how much they will need to improve their
detector efficiency to do an experiment that will impress Albert.

Alice can choose to orient her detector along any axis, and if she
aligns the detector with the axis a, then ideally the detector will
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click when her qubit’s spin is pointing up along a, but because of
detector inefficiencies it sometimes fails to click even though the
qubit points up. For pair number i, let xi ∈ {0, 1} be a variable
indicating whether Alice’s detector would click when aligned with
a — if there would be a click then xi = 1, and if there would be no
click then xi = 0. Since the detector is imperfect, xi may be 0 even
though the qubit points up along a. Similarly, x′i ∈ {0, 1} indicates
whether Alice’s detector would click if aligned with a′, yi ∈ {0, 1}
indicates whether Bob’s detector would click if aligned with b and
y′i ∈ {0, 1} indicates whether Bob’s detector would click if aligned
with b′. Under the assumption of local realism, each pair can be
assigned values of x, x′, y, y′ that are determined by local hidden
variables.

Alice and Bob are free to decide how to align their detectors in
each measurement; therefore they can fairly sample the values of
x, x′, y, y′ and infer from their measurements the values of

P++(ab) = N−1
N
∑

i=1

xiyi ,

P++(a′b) = N−1
N
∑

i=1

x′iyi ,

P++(ab′) = N−1
N
∑

i=1

xiy
′
i ,

P++(a′b′) = N−1
N
∑

i=1

x′iy
′
i , (4.156)

where N is the total number of pairs tested. Here e.g P++(ab)
is the probability that both detectors click when Alice and Bob
orient their detectors along a and b (including the effects of detector
inefficiency).

a) If x, x′, y, y′ ∈ {0, 1}, show that

xy + xy′ + x′y − x′y′ ≤ x+ y . (4.157)

b) Show that

P++(ab) + P++(a′b) + P++(ab′)− P++(a′b′) ≤ P+·(a) + P·+(b) ;
(4.158)

here P+·(a) denotes the probability that Alice’s detector clicks
if oriented along a, and P·+(b) denotes the probability that
Bob’s detector clicks if oriented along b.
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c) Now compare with the predictions of quantum mechanics, where
Alice’s detector has efficiency ηA and Bob’s detector has effi-
ciency ηB. This means that Alice’s detector clicks with prob-
ability P = ηAPperf , where Pperf is the probability of a click if
her detector were perfect, and similarly for Bob. Choosing the
a, a′, b, b′ that maximally violate the CHSH inequality, show
that the quantum-mechanical predictions violate eq. (4.158)
only if

ηAηB

ηA + ηB
>

1

1 +
√

2
. (4.159)

Thus, if ηA = ηB, Alice and Bob require detectors with effi-
ciency above 82.84% to overcome Albert’s objection.

4.3 Teleportation with continuous variables

One complete orthonormal basis for the Hilbert space of two par-
ticles on the real line is the (separable) position eigenstate basis
{|q1〉 ⊗ |q2〉}. Another is the entangled basis {|Q, P 〉}, where

|Q, P 〉 =
1√
2π

∫

dq eiPq|q〉 ⊗ |q +Q〉 ; (4.160)

these are the simultaneous eigenstates of the relative position oper-
ator Q ≡ q2 − q1 and the total momentum operator P ≡ p1 + p2.

a) Verify that

〈Q′, P ′|Q, P 〉 = δ(Q′ −Q)δ(P ′ − P ) .
(4.161)

b) Since the states {|Q, P 〉} are a basis, we can expand a position
eigenstate as

|q1〉 ⊗ |q2〉 =

∫

dQdP |Q, P 〉〈Q, P | (|q1〉 ⊗ |q2〉) .
(4.162)

Evaluate the coefficients 〈Q, P | (|q1〉 ⊗ |q2〉).
c) Alice and Bob have prepared the entangled state |Q, P 〉AB of

two particles A and B; Alice has kept particle A and Bob
has particle B. Now Alice has received an unknown single-
particle wavepacket |ψ〉C =

∫

dq |q〉C C〈q|ψ〉C that she intends
to teleport to Bob. Design a protocol that they can execute to
achieve the teleportation. What should Alice measure? What
information should she send to Bob? What should Bob do
when he receives this information, so that particle B will be
prepared in the state |ψ〉B?
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4.4 Teleportation with mixed states.

An operational way to define entanglement is that an entangled
state can be used to teleport an unknown quantum state with better
fidelity than could be achieved with local operations and classical
communication only. In this exercise, you will show that there are
mixed states that are entangled in this sense, yet do not violate any
Bell inequality. Hence, for mixed states (in contrast to pure states)
“entangled” and “Bell-inequality-violating” are not equivalent.

Consider a “noisy” entangled pair with density matrix.

ρ(λ) = (1− λ)|ψ−〉〈ψ−| + λ
1

4
1. (4.163)

a) Find the fidelity F that can be attained if the state ρ(λ) is used
to teleport a qubit from Alice to Bob. [Hint: Recall that you
showed in an earlier exercise that a “random guess” has fidelity
F = 1

2 .]

b) For what values of λ is the fidelity found in (a) better than what
can be achieved if Alice measures her qubit and sends a classical
message to Bob? [Hint: Earlier, you showed that F = 2/3 can
be achieved if Alice measures her qubit. In fact this is the best
possible F attainable with classical communication.]

c) Compute

Prob(↑n̂↑m̂) ≡ tr (EA(n̂)EB(m̂)ρ(λ)) ,
(4.164)

where EA(n̂) is the projection of Alice’s qubit onto | ↑n̂〉 and
EB(m̂) is the projection of Bob’s qubit onto | ↑m̂〉.

d) Consider the case λ = 1/2. Show that in this case the state ρ(λ)
violates no Bell inequalities. Hint: It suffices to construct a
local hidden-variable model that correctly reproduces the spin
correlations found in (c), for λ = 1/2. Suppose that the hidden
variable α̂ is uniformly distributed on the unit sphere, and that
there are functions fA and fB such that

ProbA(↑n̂) = fA(α̂ · n̂), ProbB(↑m̂) = fB(α̂ · m̂).
(4.165)

The problem is to find fA and fB (where 0 ≤ fA,B ≤ 1) with
the properties

∫

α̂
fA(α̂ · n̂) = 1/2,

∫

α̂
fB(α̂ · m̂) = 1/2,

∫

α̂
fA(α̂ · n̂)fB(α̂ · m̂) = Prob(↑n̂↑m̂). (4.166)



4.12 Exercises 65

4.5 Quantum key distribution

Alice and Bob want to execute a quantum key distribution protocol.
Alice is equipped to prepare either one of the two states |u〉 or |v〉.
These two states, in a suitable basis, can be expressed as

|u〉 =

(

cosα
sinα

)

, |v〉 =

(

sinα
cosα

)

, (4.167)

where 0 < α < π/4. Alice decides at random to send either |u〉
or |v〉 to Bob, and Bob is to make a measurement to determine
what she sent. Since the two states are not orthogonal, Bob cannot
distinguish the states perfectly.

a) Bob realizes that he can’t expect to be able to identify Alice’s
qubit every time, so he settles for a procedure that is successful
only some of the time. He performs a POVM with three pos-
sible outcomes: ¬u, ¬v, or DON’T KNOW. If he obtains the
result ¬u, he is certain that |v〉 was sent, and if he obtains ¬v,
he is certain that |u〉 was sent. If the result is DON’T KNOW,
then his measurement is inconclusive. This POVM is defined
by the operators

f¬u = A(I − |u〉〈u|) , f¬v = A(I − |v〉〈v|) ,
fDK = (1 − 2A)I +A (|u〉〈u|+ |v〉〈v|) , (4.168)

where A is a positive real number. How should Bob choose
A to minimize the probability of the outcome DK, and what
is this minimal DK probability (assuming that Alice chooses
from {|u〉, |v〉} equiprobably)? [Hint: If A is too large, fDK

will have negative eigenvalues, and eq.(4.168) will not be a
POVM.]

b) Design a quantum key distribution protocol using Alice’s source
and Bob’s POVM.

c) Of course, Eve also wants to know what Alice is sending to Bob.
Hoping that Alice and Bob won’t notice, she intercepts each
qubit that Alice sends, by performing an orthogonal measure-

ment that projects onto the basis
{(

1
0

)

,
(

0
1

)}

. If she obtains

the outcome
(

1
0

)

, she sends the state |u〉 on to Bob, and if she

obtains the outcome
(

0
1

)

, she sends |v〉 on to Bob. Therefore

each time Bob’s POVM has a conclusive outcome, Eve knows
with certainty what that outcome is. But Eve’s tampering
causes detectable errors; sometimes Bob obtains a “conclusive”
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outcome that actually differs from what Alice sent. What is
the probability of such an error?

4.6 Minimal disturbance

In Exercise 2.1, we studied a game in which Alice decides at random
(equiprobably) whether to prepare one of two possible pure states
of a single qubit, either

|ψ〉 =

(

cosα
sinα

)

, or |ψ̃〉 =

(

sinα
cosα

)

,
(4.169)

and sends the state to Bob. By performing an orthogonal measure-
ment in the basis {|0〉, |1〉}, Bob can identify the state with minimal
error probability

(perror)optimal = sin2 α =
1

2
(1− sin θ) , (4.170)

where we have defined θ by

〈ψ|ψ̃〉 ≡ cos θ = sin(2α) . (4.171)

But now let’s suppose that Eve wants to eavesdrop on the state as it
travels from Alice to Bob. Like Bob, she wishes to extract optimal
information that distinguishes |ψ〉 from |ψ̃〉, and she also wants to
minimize the disturbance introduced by her eavesdropping, so that
Alice and Bob are not likely to notice that anything is amiss.

Eve realizes that the optimal POVM can be achieved by measure-
ment operators

M0 = |φ0〉〈0| , M1 = |φ1〉〈1| , (4.172)

where the vectors |φ0〉, and |φ1〉 are arbitrary. If Eve performs this
measurement, then Bob receives the state

ρ′ = cos2 α|φ0〉〈φ0| + sin2 α|φ1〉〈φ1| , (4.173)

if Alice sent |ψ〉, and the state

ρ̃′ = sin2 α|φ0〉〈φ0| + cos2 α|φ1〉〈φ1| , (4.174)

if Alice sent |ψ̃〉.
Eve wants the average fidelity of the state received by Bob to be as
large as possible. The quantity that she wants to minimize, which
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we will call the “disturbance” D, measures how close this average
fidelity is to one:

D = 1− 1

2
(F + F̃ ) , (4.175)

where

F = 〈ψ|ρ′|ψ〉 , F̃ = 〈ψ̃|ρ̃′|ψ̃〉 . (4.176)

The purpose of this exercise is to examine how effectively Eve can re-
duce the disturbance by choosing her measurement operators prop-
erly.

a) Show that F + F̃ can be expressed as

F + F̃ = 〈φ0|A|φ0〉 + 〈φ1|B|φ1〉 , (4.177)

where

A =

(

1 − 2 cos2 α sin2 α cosα sinα
cosα sinα 2 cos2 α sin2 α

)

,

B =

(

2 cos2 α sin2 α cosα sinα
cosα sinα 1 − 2 cos2 α sin2 α

)

. (4.178)

b) Show that if |φ0〉 and |φ1〉 are chosen optimally, the minimal
disturbance that can be attained is

Dmin(cos2 θ) =
1

2
(1 −

√

1− cos2 θ + cos4 θ) .
(4.179)

[Hint: We can choose |φ0〉 and |φ1〉 to maximize the two terms
in eq. (4.177) independently. The maximal value is the maxi-
mal eigenvalue of A, which since the eigenvalues sum to 1, can

be expressed as λmax = 1
2

(

1 +
√

1− 4 · det A
)

.] Of course,

Eve could reduce the disturbance further were she willing to
settle for a less than optimal probability of guessing Alice’s
state correctly.

c) Sketch a plot of the function Dmin(cos2 θ). Interpret its value for
cos θ = 1 and cos θ = 0. For what value of θ is Dmin largest?
Find Dmin and (perror)optimal for this value of θ.

4.7 Approximate cloning

The no-cloning theorem shows that we can’t build a unitary machine
that will make a perfect copy of an unknown quantum state. But
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suppose we are willing to settle for an imperfect copy — what fidelity
might we achieve?

Consider a machine that acts on three qubit states according to

|000〉ABC →
√

2

3
|00〉AB|0〉C +

√

1

3
|ψ+〉AB|1〉C

|100〉ABC →
√

2

3
|11〉AB|1〉C +

√

1

3
|ψ+〉AB|0〉C . (4.180)

a) Is such a device physically realizable, in principle?

If the machine operates on the initial state |ψ〉A|00〉BC , it pro-
duces an pure entangled state |Ψ〉ABC of the three qubits. But
if we observe qubit A alone, its final state is the density operator
ρ′

A = trBC (|Ψ〉ABC ABC〈Ψ|). Similarly, the qubit B, observed in
isolation, has the final state ρ′

B . It is easy to see that ρ′
A = ρ′

B —
these are the identical, but imperfect, copies of the input pure state
|ψ〉A.

b) The mapping from the initial state |ψ〉A A〈ψ| to the final state
ρ′

A of qubit A defines a superoperator $. Find an operator-sum
representation of $.

c) For |ψ〉A = a|0〉A + b|1〉A, find ρ′
A, and compute its fidelity F ≡

A〈ψ|ρ′
A|ψ〉A.

4.8 We’re so sorry, Uncle Albert

Consider the n-qubit “cat” state

|ψ〉n =

√

1

2
(|000 . . .0〉 + |111 . . .1〉) . (4.181)

This state can be characterized as the simultaneous eigenstate (with
eigenvalue 1) of the n operators

σ3 ⊗ σ3 ⊗ I ⊗ I ⊗ · · · ⊗ I ⊗ I ⊗ I

I ⊗ σ3 ⊗ σ3 ⊗ I ⊗ · · · ⊗ I ⊗ I ⊗ I

. . .

I ⊗ I ⊗ I ⊗ I ⊗ · · · ⊗ I ⊗ σ3 ⊗ σ3

σ1 ⊗ σ1 ⊗ σ1 ⊗ · · · ⊗ σ1 ⊗ σ1 ⊗ σ1 (4.182)

a) Show that |ψ〉n is an eigenstate of the operator

(σ1 + iσ2)
⊗n + (σ1 − iσ2)

⊗n , (4.183)

and compute its eigenvalue.
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b) If we believe in local hidden variables, then we believe that, for
each of the n qubits, both σ1 and σ2 have definite values once
the hidden variables are specified. If so, then what can we say
about the modulus of (σ1 + iσ2)

⊗n or (σ1 − iσ2)
⊗n, assuming

definite values for the hidden variables?

c) From (b), derive an upper bound on

1

2

∣

∣

∣(σ1 + iσ2)
⊗n + (σ1 − iσ2)

⊗n
∣

∣

∣ (4.184)

that follows from the local hidden-variable hypothesis.

d) Compare with (a). What would Einstein say?

4.9 Entanglement manipulation

a) Twenty-five players on the New York Yankees, and twenty-five
players on the San Diego Padres, want to share a 50-qubit cat
state. The Yankees prepare a 26-qubit cat state, and give one
of the qubits to Alice; so do the Padres. Now Alice is to sew the
states together and prepare the 50-qubit state. What should
she do? [Hint: Think about stabilizers.]

b) After joining the Yankees, Alice assumed custody of one of the
qubits in their 25-qubit cat state. But today she has been
traded! Alice is ordered to pull her qubit out of the cat state,
leaving an undamaged 24-qubit cat state for the other players.
What should she do? [Hint: Think about stabilizers.]

4.10 Peres-Horodecki criterion in d dimensions

Recall that a Werner state of a pair of qubits can be expressed as

ρ(λ) = λ|φ+〉〈φ+| + 1

4
(1− λ)I , (4.185)

and that the partial transpose ρPT
AB of a bipartite density operator

ρAB is defined as

ρPT
AB ≡ (IA ⊗ TB)(ρAB) (4.186)

where T is the transpose operation that acts in the computational
basis {|i〉} as

T (|i〉〈j|) = |j〉〈i| . (4.187)

We saw in class that the partial transpose of the Werner state ρ(λ)
is negative for λ > 1/3; therefore, by the Peres-Horodecki criterion,
the Werner state is inseparable for λ > 1/3.
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a) One natural way to generalize the Werner state to a pair of d-
dimensional systems is to consider

ρΦ(λ) = λ|Φ〉〈Φ|+ 1

d2
(1− λ)I , (4.188)

where |Φ〉 is the maximally entangled state

|Φ〉 =
1√
d

d
∑

i=1

|i〉 ⊗ |i〉 . (4.189)

Show that

(|Φ〉〈Φ|)PT =
1

d
(I − 2Eantisym) , (4.190)

where Eantisym is the projector onto the space that is antisym-
metric under interchange of the two systems A and B.

b) For what values of λ does the state ρΦ(λ) have a negative partial
transpose?

c) If the Werner state for two qubits is chosen to be

ρ(λ) = λ|ψ−〉〈ψ−|+ 1

4
(1 − λ)I , (4.191)

then another natural way to generalize the Werner state to a
pair of d-dimensional systems is to consider

ρanti(λ) = λ

(

1
1
2d(d− 1)

)

Eantisym +
1

d2
(1 − λ)I . (4.192)

For what values of λ does ρanti(λ) have a negative partial trans-
pose?


