
Chapter 6

Quantum Computation

6.1 Classical Circuits

The concept of a quantum computer was introduced in Chapter 1. Here we
will specify our model of quantum computation more precisely, and we will
point out some basic properties of the model. But before we explain what a
quantum computer does, perhaps we should say what a classical computer
does.

6.1.1 Universal gates

A classical (deterministic) computer evaluates a function: given n-bits of
input it producesm-bits of output that are uniquely determined by the input;
that is, it finds the value of

f : {0, 1}n → {0, 1}m, (6.1)

for a particular specified n-bit argument. A function with an m-bit value is
equivalent to m functions, each with a one-bit value, so we may just as well
say that the basic task performed by a computer is the evaluation of

f : {0, 1}n → {0, 1}. (6.2)

We can easily count the number of such functions. There are 2n possible
inputs, and for each input there are two possible outputs. So there are
altogether 22n

functions taking n bits to one bit.

1

2 CHAPTER 6. QUANTUM COMPUTATION

The evaluation of any such function can be reduced to a sequence of
elementary logical operations. Let us divide the possible values of the input

x = x1x2x3 . . . xn, (6.3)

into one set of values for which f(x) = 1, and a complementary set for which
f(x) = 0. For each x(a) such that f(x(a)) = 1, consider the function f (a) such
that

f (a)(x) =

{

1 x = x(a)

0 otherwise
(6.4)

Then

f(x) = f (1)(x) ∨ f (2)(x) ∨ f (3)(x) ∨ (6.5)

f is the logical OR (∨) of all the f (a)’s. In binary arithmetic the ∨ operation
of two bits may be represented

x ∨ y = x+ y − x · y; (6.6)

it has the value 0 if x and y are both zero, and the value 1 otherwise.
Now consider the evaluation of f (a). In the case where x(a) = 111 . . . 1,

we may write

f (a)(x) = x1 ∧ x2 ∧ x3 . . . ∧ xn; (6.7)

it is the logical AND (∧) of all n bits. In binary arithmetic, the AND is the
product

x ∧ y = x · y. (6.8)

For any other x(a), f (a) is again obtained as the AND of n bits, but where the
NOT (¬) operation is first applied to each xi such that x

(a)
i = 0; for example

f (a)(x) = (¬x1) ∧ x2 ∧ x3 ∧ (¬x4) ∧ . . . (6.9)

if

x(a) = 0110 (6.10)

6.1. CLASSICAL CIRCUITS 3

The NOT operation is represented in binary arithmetic as

¬x = 1 − x. (6.11)

We have now constructed the function f(x) from three elementary logi-
cal connectives: NOT, AND, OR. The expression we obtained is called the
“disjunctive normal form” of f(x). We have also implicitly used another
operation, COPY, that takes one bit to two bits:

COPY : x→ xx. (6.12)

We need the COPY operation because each f (a) in the disjunctive normal
form expansion of f requires its own copy of x to act on.

In fact, we can pare our set of elementary logical connectives to a smaller
set. Let us define a NAND (“NOT AND”) operation by

x ↑ y = ¬(x ∧ y) = (¬x) ∨ (¬y). (6.13)

In binary arithmetic, the NAND operation is

x ↑ y = 1 − xy. (6.14)

If we can COPY, we can use NAND to perform NOT:

x ↑ x = 1 − x2 = 1 − x = ¬x. (6.15)

(Alternatively, if we can prepare the constant y = 1, then x ↑ 1 = 1−x = ¬x.)
Also,

(x ↑ y) ↑ (x ↑ y) = ¬(x ↑ y) = 1 − (1 − xy) = xy = x ∧ y,
(6.16)

and

(x ↑ x) ↑ (y ↑ y) = (¬x) ↑ (¬y) = 1 − (1 − x)(1 − y)

= x+ y − xy = x ∨ y. (6.17)

So if we can COPY, NAND performs AND and OR as well. We conclude
that the single logical connective NAND, together with COPY, suffices to
evaluate any function f . (You can check that an alternative possible choice
of the universal connective is NOR:

x ↓ y = ¬(x ∨ y) = (¬x) ∧ (¬y).) (6.18)

4 CHAPTER 6. QUANTUM COMPUTATION

If we are able to prepare a constant bit (x = 0 or x = 1), we can reduce
the number of elementary operations from two to one. The NAND/NOT
gate

(x, y) → (1 − x, 1 − xy), (6.19)

computes NAND (if we ignore the first output bit) and performs copy (if
we set the second input bit to y = 1, and we subsequently apply NOT to
both output bits). We say, therefore, that NAND/NOT is a universal gate.
If we have a supply of constant bits, and we can apply the NAND/NOT
gates to any chosen pair of input bits, then we can perform a sequence of
NAND/NOT gates to evaluate any function f : {0, 1}n → {0, 1} for any
value of the input x = x1x2 . . . xn.

These considerations motivate the circuit model of computation. A com-
puter has a few basic components that can perform elementary operations
on bits or pairs of bits, such as COPY, NOT, AND, OR. It can also prepare
a constant bit or input a variable bit. A computation is a finite sequence of
such operations, a circuit, applied to a specified string of input bits.1 The
result of the computation is the final value of all remaining bits, after all the
elementary operations have been executed.

It is a fundamental result in the theory of computation that just a few
elementary gates suffice to evaluate any function of a finite input. This
result means that with very simple hardware components, we can build up
arbitrarily complex computations.

So far, we have only considered a computation that acts on a particular
fixed input, but we may also consider families of circuits that act on inputs
of variable size. Circuit families provide a useful scheme for analyzing and
classifying the complexity of computations, a scheme that will have a natural
generalization when we turn to quantum computation.

6.1.2 Circuit complexity

In the study of complexity, we will often be interested in functions with a
one-bit output

f : {0, 1}n → {0, 1}. (6.20)

1The circuit is required to be acyclic, meaning that no directed closed loops are
permitted.

6.1. CLASSICAL CIRCUITS 5

Such a function f may be said to encode a solution to a “decision problem”
— the function examines the input and issues a YES or NO answer. Often, a
question that would not be stated colloquially as a question with a YES/NO
answer can be “repackaged” as a decision problem. For example, the function
that defines the FACTORING problem is:

f(x, y) =

{

1 if integer x has a divisor less than y,
0 otherwise;

(6.21)

knowing f(x, y) for all y < x is equivalent to knowing the least nontrivial
factor of y. Another important example of a decision problem is the HAMIL-
TONIAN path problem: let the input be an `-vertex graph, represented by
an `× ` adjacency matrix (a 1 in the ij entry means there is an edge linking
vertices i and j); the function is

f(x) =

{

1 if graph x has a Hamiltonian path,
0 otherwise.

(6.22)

(A path is Hamiltonian if it visits each vertex exactly once.)
We wish to gauge how hard a problem is by quantifying the resources

needed to solve the problem. For a decision problem, a reasonable measure
of hardness is the size of the smallest circuit that computes the corresponding
function f : {0, 1}n → {0, 1}. By size we mean the number of elementary
gates or components that we must wire together to evaluate f . We may also
be interested in how much time it takes to do the computation if many gates
are permitted to execute in parallel. The depth of a circuit is the number of
time steps required, assuming that gates acting on distinct bits can operate
simultaneously (that is, the depth is the maximum length of a directed path
from the input to the output of the circuit). The width of a circuit is the
maximum number of gates that act in any one time step.

We would like to divide the decision problems into two classes: easy and
hard. But where should we draw the line? For this purpose, we consider
infinite families of decision problems with variable input size; that is, where
the number of bits of input can be any integer n. Then we can examine how
the size of the circuit that solves the problem scales with n.

If we use the scaling behavior of a circuit family to characterize the dif-
ficulty of a problem, there is a subtlety. It would be cheating to hide the
difficulty of the problem in the design of the circuit. Therefore, we should

6 CHAPTER 6. QUANTUM COMPUTATION

restrict attention to circuit families that have acceptable “uniformity” prop-
erties — it must be “easy” to build the circuit with n+ 1 bits of input once
we have constructed the circuit with an n-bit input.

Associated with a family of functions {fn} (where fn has n-bit input) are
circuits {Cn} that compute the functions. We say that a circuit family {Cn}
is “polynomial size” if the size of Cn grows with n no faster than a power of
n,

size (Cn) ≤ poly (n), (6.23)

where poly denotes a polynomial. Then we define:

P = {decision problem solved by polynomial-size circuit families}

(P for “polynomial time”). Decision problems in P are “easy.” The rest are
“hard.” Notice that Cn computes fn(x) for every possible n-bit input, and
therefore, if a decision problem is in P we can find the answer even for the
“worst-case” input using a circuit of size no greater than poly(n). (As noted
above, we implicitly assume that the circuit family is “uniform” so that the
design of the circuit can itself be solved by a polynomial-time algorithm.
Under this assumption, solvability in polynomial time by a circuit family is
equivalent to solvability in polynomial time by a universal Turing machine.)

Of course, to determine the size of a circuit that computes fn, we must
know what the elementary components of the circuit are. Fortunately, though,
whether a problem lies in P does not depend on what gate set we choose, as
long as the gates are universal, the gate set is finite, and each gate acts on a
set of bits of bounded size. One universal gate set can simulate another.

The vast majority of function families f : {0, 1}n → {0, 1} are not in
P . For most functions, the output is essentially random, and there is no
better way to “compute” f(x) than to consult a look-up table of its values.
Since there are 2n n-bit inputs, the look-up table has exponential size, and a
circuit that encodes the table must also have exponential size. The problems
in P belong to a very special class — they have enough structure so that the
function f can be computed efficiently.

Of particular interest are decision problems that can be answered by
exhibiting an example that is easy to verify. For example, given x and y < x,
it is hard (in the worst case) to determine if x has a factor less than y. But
if someone kindly provides a z < y that divides x, it is easy for us to check
that z is indeed a factor of x. Similarly, it is hard to determine if a graph

6.1. CLASSICAL CIRCUITS 7

has a Hamiltonian path, but if someone kindly provides a path, it is easy to
verify that the path really is Hamiltonian.

This concept that a problem may be hard to solve, but that a solution
can be easily verified once found, can be formalized by the notion of a “non-
deterministic” circuit. A nondeterministic circuit C̃n,m(x(n), y(m)) associated
with the circuit Cn(x(n)) has the property:

Cn(x(n)) = 1 iff C̃n,m(x(n), y(m)) = 1 for some y(m). (6.24)

(where x(n) is n bits and y(m) is m bits.) Thus for a particular x(n) we can
use C̃n,m to verify that Cn(x

(n) = 1, if we are fortunate enough to have the
right y(m) in hand. We define:

NP : {decision problems that admit a polynomial-size nondeter-
ministic circuit family}

(NP for “nondeterministic polynomial time”). If a problem is in NP , there
is no guarantee that the problem is easy, only that a solution is easy to check
once we have the right information. Evidently P ⊆ NP . Like P , the NP
problems are a small subclass of all decision problems.

Much of complexity theory is built on a fundamental conjecture:

Conjecture : P 6= NP ; (6.25)

there exist hard decision problems whose solutions are easily verified. Un-
fortunately, this important conjecture still awaits proof. But after 30 years
of trying to show otherwise, most complexity experts are firmly confident of
its validity.

An important example of a problem in NP is CIRCUIT-SAT. In this case
the input is a circuit C with n gates, m input bits, and one output bit. The
problem is to find if there is any m-bit input for which the output is 1. The
function to be evaluated is

f(C) =

{

1 if there exists x(m) with C(x(m)) = 1,
0 otherwise.

(6.26)

This problem is in NP because, given a circuit, it is easy to simulate the
circuit and evaluate its output for any particular input.

I’m going to state some important results in complexity theory that will
be relevant for us. There won’t be time for proofs. You can find out more

8 CHAPTER 6. QUANTUM COMPUTATION

by consulting one of the many textbooks on the subject; one good one is
Computers and Intractability: A Guide to the Theory of NP-Completeness,
by M. R. Garey and D. S. Johnson.

Many of the insights engendered by complexity theory flow from Cook’s
Theorem (1971). The theorem states that every problem in NP is poly-
nomially reducible to CIRCUIT-SAT. This means that for any PROBLEM
∈ NP , there is a polynomial-size circuit family that maps an “instance” x(n)

of PROBLEM to an “instance” y(m) of CIRCUIT-SAT; that is

CIRCUIT− SAT (y(m)) = 1 iff PROBLEM (x(n)) = 1.
(6.27)

It follows that if we had a magical device that could efficiently solve CIRCUIT-
SAT (a CIRCUIT-SAT “oracle”), we could couple that device with the poly-
nomial reduction to efficiently solve PROBLEM. Cook’s theorem tells us that
if it turns out that CIRCUIT-SAT ∈ P , then P = NP .

A problem that, like CIRCUIT-SAT, has the property that every prob-
lem in NP is polynomially reducible to it, is called NP -complete (NPC).
Since Cook, many other examples have been found. To show that a PROB-
LEM ∈ NP is NP -complete, it suffices to find a polynomial reduction to
PROBLEM of another problem that is already known to be NP -complete.
For example, one can exhibit a polynomial reduction of CIRCUIT-SAT to
HAMILTONIAN. It follows from Cook’s theorem that HAMILTONIAN is
also NP -complete.

If we assume that P 6= NP , it follows that there exist problems in NP
of intermediate difficulty (the class NPI). These are neither P nor NPC .

Another important complexity class is called co-NP . Heuristically, NP
decision problems are ones we can answer by exhibiting an example if the an-
swer is YES, while co-NP problems can be answered with a counter-example
if the answer is NO. More formally:

{C} ∈ NP :C(x) = 1 iff C(x, y) = 1 for some y (6.28)

{C} ∈ co−NP :C(x) = 1 iff C(x, y) = 1 for all y. (6.29)

Clearly, there is a symmetry relating the classes NP and co-NP — whether
we consider a problem to be in NP or co-NP depends on how we choose to
frame the question. (“Is there a Hamiltonian circuit?” is in NP . “Is there
no Hamiltonian circuit?” is in co-NP). But the interesting question is: is a
problem in both NP and co-NP? If so, then we can easily verify the answer

6.1. CLASSICAL CIRCUITS 9

(once a suitable example is in hand) regardless of whether the answer is YES
or NO. It is believed (though not proved) that NP 6= co−NP . (For example,
we can show that a graph has a Hamiltonian path by exhibiting an example,
but we don’t know how to show that it has no Hamiltonian path that way!)
Assuming that NP 6= co−NP , there is a theorem that says that no co-NP
problems are contained in NPC. Therefore, problems in the intersection of
NP and co-NP , if not in P , are good candidates for inclusion in NPI.

In fact, a problem in NP ∩ co−NP that is believed not in P is the
FACTORING problem. As already noted, FACTORING is in NP because,
if we are offered a factor of x, we can easily check its validity. But it is also in
co-NP , because it is known that if we are given a prime number then (at least
in principle), we can efficiently verify its primality. Thus, if someone tells us
the prime factors of x, we can efficiently check that the prime factorization is
right, and can exclude that any integer less than y is a divisor of x. Therefore,
it seems likely that FACTORING is in NPI .

We are led to a crude (conjectured) picture of the structure of NP ∪
co−NP . NP and co-NP do not coincide, but they have a nontrivial inter-
section. P lies in NP ∩ co−NP (because P = co−P), but the intersection
also contains problems not in P (like FACTORING). Neither NPC nor co-
NPC intersects with NP ∩ co−NP .

There is much more to say about complexity theory, but we will be con-
tent to mention one more element that relates to the discussion of quantum
complexity. It is sometimes useful to consider probabilistic circuits that have
access to a random number generator. For example, a gate in a probabilistic
circuit might act in either one of two ways, and flip a fair coin to decide which
action to execute. Such a circuit, for a single fixed input, can sample many
possible computational paths. An algorithm performed by a probabilistic
circuit is said to be “randomized.”

If we attack a decision problem using a probabilistic computer, we attain
a probability distribution of outputs. Thus, we won’t necessarily always get
the right answer. But if the probability of getting the right answer is larger
than 1

2
+ δ for every possible input (δ > 0), then the machine is useful. In

fact, we can run the computation many times and use majority voting to
achieve an error probability less than ε. Furthermore, the number of times
we need to repeat the computation is only polylogarithmic in ε−1.

If a problem admits a probabilistic circuit family of polynomial size that
always gives the right answer with probability larger than 1

2
+δ (for any input,

and for fixed δ > 0), we say the problem is in the class BPP (“bounded-error

10 CHAPTER 6. QUANTUM COMPUTATION

probabilistic polynomial time”). It is evident that

P ⊆ BPP, (6.30)

but the relation of NP to BPP is not known. In particular, it has not been
proved that BPP is contained in NP .

6.1.3 Reversible computation

In devising a model of a quantum computer, we will generalize the circuit
model of classical computation. But our quantum logic gates will be unitary
transformations, and hence will be invertible, while classical logic gates like
the NAND gate are not invertible. Before we discuss quantum circuits, it is
useful to consider some features of reversible classical computation.

Aside from the connection with quantum computation, another incentive
for studying reversible classical computation arose in Chapter 1. As Lan-
dauer observed, because irreversible logic elements erase information, they
are necessarily dissipative, and therefore, require an irreducible expenditure
of power. But if a computer operates reversibly, then in principle there need
be no dissipation and no power requirement. We can compute for free!

A reversible computer evaluates an invertible function taking n bits to n
bits

f : {0, 1}n → {0, 1}n, (6.31)

the function must be invertible so that there is a unique input for each output;
then we are able in principle to run the computation backwards and recover
the input from the output. Since it is a 1-1 function, we can regard it as a
permutation of the 2n strings of n bits — there are (2n)! such functions.

Of course, any irreversible computation can be “packaged” as an evalu-
ation of an invertible function. For example, for any f : {0, 1}n → {0, 1}m,
we can construct f̃ : {0, 1}n+m → {0, 1}n+m such that

f̃(x; 0(m)) = (x; f(x)), (6.32)

(where 0(m) denotes m-bits initially set to zero). Since f̃ takes each (x; 0(m))
to a distinct output, it can be extended to an invertible function of n + m
bits. So for any f taking n bits to m, there is an invertible f̃ taking n + m
to n+m, which evaluates f(x) acting on (x, 0(m))

6.1. CLASSICAL CIRCUITS 11

Now, how do we build up a complicated reversible computation from
elementary components — that is, what constitutes a universal gate set? We
will see that one-bit and two-bit reversible gates do not suffice; we will need
three-bit gates for universal reversible computation.

Of the four 1-bit → 1-bit gates, two are reversible; the trivial gate and
the NOT gate. Of the (24)2 = 256 possible 2-bit → 2-bit gates, 4! = 24 are
reversible. One of special interest is the controlled-NOT or reversible XOR
gate that we already encountered in Chapter 4:

XOR : (x, y) 7→ (x, x⊕ y), (6.33)

x

y

x

x⊕ y

s

g

This gate flips the second bit if the first is 1, and does nothing if the first bit
is 0 (hence the name controlled-NOT). Its square is trivial, that is, it inverts
itself. Of course, this gate performs a NOT on the second bit if the first bit
is set to 1, and it performs the copy operation if y is initially set to zero:

XOR : (x, 0) 7→ (x, x). (6.34)

With the circuit

x

y

y

x

s

g

g

s

s

g

constructed from three X0R’s, we can swap two bits:

(x, y) → (x, x⊕ y) → (y, x⊕ y) → (y, x). (6.35)

With these swaps we can shuffle bits around in a circuit, bringing them
together if we want to act on them with a particular component in a fixed
location.

To see that the one-bit and two-bit gates are nonuniversal, we observe
that all these gates are linear. Each reversible two-bit gate has an action of
the form

(

x

y

)

→
(

x′

y′

)

= M
(

x

y

)

+
(

a

b

)

, (6.36)

12 CHAPTER 6. QUANTUM COMPUTATION

where the constant
(

a
b

)

takes one of four possible values, and the matrix M
is one of the six invertible matrices

M =

(

1 0
0 1

)

,

(

0 1
1 0

)

,

(

1 1
0 1

)

,

(

1 0
1 1

)

,

(

0 1
1 1

)

,

(

1 1
1 0

)

.
(6.37)

(All addition is performed modulo 2.) Combining the six choices for M with
the four possible constants, we obtain 24 distinct gates, which exhausts all
the reversible 2 → 2 gates.

Since the linear transformations are closed under composition, any circuit
composed from reversible 2 → 2 (and 1 → 1) gates will compute a linear
function

x→ Mx+ a. (6.38)

But for n ≥ 3, there are invertible functions on n-bits that are nonlinear. An
important example is the 3-bit Toffoli gate (or controlled-controlled-NOT)
θ(3)

θ(3) : (x, y, z) → (x, y, z ⊕ xy); (6.39)

x

y

z

x

y

z ⊕ xy

s

s

g

it flips the third bit if the first two are 1 and does nothing otherwise. Like
the XOR gate, it is its own inverse.

Unlike the reversible 2-bit gates, the Toffoli gate serves as a universal gate
for Boolean logic, if we can provide fixed input bits and ignore output bits.
If z is initially 1, then x ↑ y = 1 − xy appears in the third output — we can
perform NAND. If we fix x = 1, the Toffoli gate functions like an XOR gate,
and we can use it to copy.

The Toffoli gate θ(3) is universal in the sense that we can build a circuit to
compute any reversible function using Toffoli gates alone (if we can fix input
bits and ignore output bits). It will be instructive to show this directly,
without relying on our earlier argument that NAND/NOT is universal for
Boolean functions. In fact, we can show the following: From the NOT gate

6.1. CLASSICAL CIRCUITS 13

and the Toffoli gate θ(3), we can construct any invertible function on n bits,
provided we have one extra bit of scratchpad space available.

The first step is to show that from the three-bit Toffoli-gate θ(3) we can
construct an n-bit Toffoli gate θ(n) that acts as

(x1, x2, . . . xn−1, y) → (x1, x2, . . . , xn−1y ⊕ x1x2 . . . xn−1).
(6.40)

The construction requires one extra bit of scratch space. For example, we
construct θ(4) from θ(3)’s with the circuit

x1

x2

0

x3

y

x1

x2

0

x3

y ⊕ x1x2x3

s

s

g s

s

g

s

s

g

The purpose of the last θ(3) gate is to reset the scratch bit back to its original
value zero. Actually, with one more gate we can obtain an implementation
of θ(4) that works irrespective of the initial value of the scratch bit:

x1

x2

w

x3

y

x1

x2

w

x3

y ⊕ x1x2x3

s

s

g s

s

g

s

s

g s

s

g

Again, we can eliminate the last gate if we don’t mind flipping the value of
the scratch bit.

We can see that the scratch bit really is necessary, because θ(4) is an odd
permutation (in fact a transposition) of the 24 4-bit strings — it transposes
1111 and 1110. But θ(3) acting on any three of the four bits is an even
permutation; e.g., acting on the last three bits it transposes 0111 with 0110,

14 CHAPTER 6. QUANTUM COMPUTATION

and 1111 with 1110. Since a product of even permutations is also even, we
cannot obtain θ(4) as a product of θ(3)’s that act on four bits only.

The construction of θ(4) from four θ(3)’s generalizes immediately to the
construction of θ(n) from two θ(n−1)’s and two θ(3)’s (just expand x1 to several
control bits in the above diagram). Iterating the construction, we obtain θ(n)

from a circuit with 2n−2 +2n−3 −2 θ(3)’s. Furthermore, just one bit of scratch
space is sufficient.2) (When we need to construct θ(k), any available extra
bit will do, since the circuit returns the scratch bit to its original value. The
next step is to note that, by conjugating θ(n) with NOT gates, we can in
effect modify the value of the control string that “triggers” the gate. For
example, the circuit

x1

x2

x3

y

g

g

s

s

s

g

g

g

flips the value of y if x1x2x3 = 010, and it acts trivially otherwise. Thus
this circuit transposes the two strings 0100 and 0101. In like fashion, with
θ(n) and NOT gates, we can devise a circuit that transposes any two n-bit
strings that differ in only one bit. (The location of the bit where they differ
is chosen to be the target of the θ(n) gate.)

But in fact a transposition that exchanges any two n-bit strings can be
expressed as a product of transpositions that interchange strings that differ
in only one bit. If a0 and as are two strings that are Hamming distance s
apart (differ in s places), then there is a chain

a0, a1, a2, a3, . . . , as, (6.41)

such that each string in the chain is Hamming distance one from its neighbors.
Therefore, each of the transpositions

(a0a1), (a1a2), (a2a3), . . . (as−1as), (6.42)

2With more scratch space, we can build θ(n) from θ(3)’s much more efficiently — see
the exercises.

6.1. CLASSICAL CIRCUITS 15

can be implemented as a θ(n) gate conjugated by NOT gates. By composing
transpositions we find

(a0as) = (as−1as)(as−2as−1) . . . (a2a3)(a1a2)(a0a1)(a1a2)(a2a3)

. . . (as−2as−1)(as−1as); (6.43)

we can construct the Hamming-distance-s transposition from 2s−1 Hamming-
distance-one transpositions. It follows that we can construct (a0as) from
θ(n)’s and NOT gates.

Finally, since every permutation is a product of transpositions, we have
shown that every invertible function on n-bits (every permutation on n-bit
strings) is a product of θ(3)’s and NOT’s, using just one bit of scratch space.

Of course, a NOT can be performed with a θ(3) gate if we fix two input
bits at 1. Thus the Toffoli gate θ(3) is universal for reversible computation,
if we can fix input bits and discard output bits.

6.1.4 Billiard ball computer

Two-bit gates suffice for universal irreversible computation, but three-bit
gates are needed for universal reversible computation. One is tempted to
remark that “three-body interactions” are needed, so that building reversible
hardware is more challenging than building irreversible hardware. However,
this statement may be somewhat misleading.

Fredkin described how to devise a universal reversible computer in which
the fundamental interaction is an elastic collision between two billiard balls.
Balls of radius 1√

2
move on a square lattice with unit lattice spacing. At

each integer valued time, the center of each ball lies at a lattice site; the
presence or absence of a ball at a particular site (at integer time) encodes
a bit of information. In each unit of time, each ball moves unit distance
along one of the lattice directions. Occasionally, at integer-valued times, 90o

elastic collisions occur between two balls that occupy sites that are distance√
2 apart (joined by a lattice diagonal).
The device is programmed by nailing down balls at certain sites, so that

those balls act as perfect reflectors. The program is executed by fixing ini-
tial positions and directions for the moving balls, and evolving the system
according to Newtonian mechanics for a finite time. We read the output
by observing the final positions of all the moving balls. The collisions are
nondissipative, so that we can run the computation backward by reversing
the velocities of all the balls.

16 CHAPTER 6. QUANTUM COMPUTATION

To show that this machine is a universal reversible computer, we must
explain how to operate a universal gate. It is convenient to consider the
three-bit Fredkin gate

(x, y, z) → (x, xz + x̄y, xy + x̄z), (6.44)

which swaps y and z if x = 0 (we have introduced the notation x̄ = ¬x).
You can check that the Fredkin gate can simulate a NAND/NOT gate if we
fix inputs and ignore outputs.

We can build the Fredkin gate from a more primitive object, the switch
gate. A switch gate taking two bits to three acts as

(x, y) → (x, xy, x̄y). (6.45)

x
xy
x̄y

x
y S

The gate is “reversible” in that we can run it backwards acting on a con-
strained 3-bit input taking one of the four values

x
y
z

 =

0
0
0

0
0
1

1
0
0

1
1
0

 (6.46)

Furthermore, the switch gate is itself universal; fixing inputs and ignoring
outputs, it can do NOT (y = 1, third output) AND (second output), and
COPY (y = 1, first and second output). It is not surprising, then, that we
can compose switch gates to construct a universal reversible 3 → 3 gate.
Indeed, the circuit

builds the Fredkin gate from four switch gates (two running forward and two
running backward). Time delays needed to maintain synchronization are not
explicitly shown.

In the billiard ball computer, the switch gate is constructed with two
reflectors, such that (in the case x = y = 1) two moving balls collide twice.
The trajectories of the balls in this case are:

6.1. CLASSICAL CIRCUITS 17

A ball labeled x emerges from the gate along the same trajectory (and at the
same time) regardless of whether the other ball is present. But for x = 1, the
position of the other ball (if present) is shifted down compared to its final
position for x = 0 — this is a switch gate. Since we can perform a switch
gate, we can construct a Fredkin gate, and implement universal reversible
logic with a billiard ball computer.

An evident weakness of the billiard-ball scheme is that initial errors in the
positions and velocities of the ball will accumulate rapidly, and the computer
will eventually fail. As we noted in Chapter 1 (and Landauer has insistently
pointed out) a similar problem will afflict any proposed scheme for dissipa-
tionless computation. To control errors we must be able to compress the
phase space of the device, which will necessarily be a dissipative process.

6.1.5 Saving space

But even aside from the issue of error control there is another key question
about reversible computation. How do we manage the scratchpad space
needed to compute reversibly?

In our discussion of the universality of the Toffoli gate, we saw that in
principle we can do any reversible computation with very little scratch space.
But in practice it may be impossibly difficult to figure out how to do a
particular computation with minimal space, and in any case economizing on
space may be costly in terms of the run time.

There is a general strategy for simulating an irreversible computation on
a reversible computer. Each irreversible NAND or COPY gate can be simu-
lated by a Toffoli gate by fixing inputs and ignoring outputs. We accumulate
and save all “garbage” output bits that are needed to reverse the steps of
the computation. The computation proceeds to completion, and then a copy
of the output is generated. (This COPY operation is logically reversible.)
Then the computation runs in reverse, cleaning up all garbage bits, and re-
turning all registers to their original configurations. With this procedure
the reversible circuit runs only about twice as long as the irreversible circuit
that it simulates, and all garbage generated in the simulation is disposed of
without any dissipation and hence no power requirement.

This procedure works, but demands a huge amount of scratch space – the
space needed scales linearly with the length T of the irreversible computation
being simulated. In fact, it is possible to use space far more efficiently (with
only a minor slowdown), so that the space required scales like log T instead

18 CHAPTER 6. QUANTUM COMPUTATION

of T . (That is, there is a general-purpose scheme that requires space ∝
log T ; of course, we might do even better in the simulation of a particular
computation.)

To use space more effectively, we will divide the computation into smaller
steps of roughly equal size, and we will run these steps backward when pos-
sible during the course of the computation. However, just as we are unable
to perform step k of the computation unless step k − 1 has already been
completed, we are unable to run step k in reverse if step k−1 has previously
been executed in reverse.3 The amount of space we require (to store our
garbage) will scale like the maximum value of the number of forward steps
minus the number of backward steps that have been executed.

The challenge we face can be likened to a game — the reversible pebble
game.4 The steps to be executed form a one-dimension directed graph with
sites labeled 1, 2, 3 . . . T . Execution of step k is modeled by placing a pebble
on the kth site of the graph, and executing step k in reverse is modeled as
removal of a pebble from site k. At the beginning of the game, no sites are
covered by pebbles, and in each turn we add or remove a pebble. But we
cannot place a pebble at site k (except for k = 1) unless site k− 1 is already
covered by a pebble, and we cannot remove a pebble from site k (except for
k = 1) unless site k − 1 is covered. The object is to cover site T (complete
the computation) without using more pebbles than necessary (generating a
minimal amount of garbage).

In fact, with n pebbles we can reach site T = 2n − 1, but we can go no
further.

We can construct a recursive procedure that enables us to reach site
T = 2n−1 with n pebbles, leaving only one pebble in play. Let F1(k) denote
placing a pebble at site k, and F1(k)

−1 denote removing a pebble from site
k. Then

F2(1, 2) = F1(1)F1(2)F1(1)
−1, (6.47)

leaves a pebble at site k = 2, using a maximum of two pebbles at intermediate

3We make the conservative assumption that we are not clever enough to know ahead
of time what portion of the output from step k − 1 might be needed later on. So we store
a complete record of the configuration of the machine after step k − 1, which is not to be
erased until an updated record has been stored after the completion of a subsequent step.

4as pointed out by Bennett. For a recent discussion, see M. Li and P. Vitanyi,
quant-ph/9703022.

6.1. CLASSICAL CIRCUITS 19

stages. Similarly

F3(1, 4) = F2(1, 2)F2(3, 4)F2(1, 2)
−1, (6.48)

reaches site k = 4 using a maximum of three pebbles, and

F4(1, 8) = F3(1, 4)F3(5, 8)F3(1, 4)
−1, (6.49)

reaches k = 8 using four pebbles. Evidently we can construct Fn(1, 2
n−1)

which uses a maximum of n pebbles and leaves a single pebble in play. (The
routine

Fn(1, 2
n−1)Fn−1(2

n−1 + 1, 2n−1 + 2n−2) . . . F1(2
n − 1),

(6.50)

leaves all n pebbles in play, with the maximal pebble at site k = 2n − 1.)
Interpreted as a routine for executing T = 2n−1 steps of a computation,

this strategy for playing the pebble game represents a simulation requiring
space scaling like n ∼ log T . How long does the simulation take? At each level
of the recursive procedure described above, two steps forward are replaced by
two steps forward and one step back. Therefore, an irreversible computation
with Tirr = 2n steps is simulated in Trev = 3n steps, or

Trev = (Tirr)
log 3/ log 2,= (Tirr)

1.58, (6.51)

a modest power law slowdown.
In fact, we can improve the slowdown to

Trev ∼ (Tirr)
1+ε, (6.52)

for any ε > 0. Instead of replacing two steps forward with two forward and
one back, we replace ` forward with ` forward and ` − 1 back. A recursive
procedure with n levels reaches site `n using a maximum of n(` − 1) + 1
pebbles. Now we have Tirr = `n and Trev = (2`− 1)n, so that

Trev = (Tirr)
log(2`−1)/ log `; (6.53)

the power characterizing the slowdown is

log(2`− 1)

log `
=

log 2` + log
(

1 − 1
2`

)

log `
' 1 +

log 2

log `
, (6.54)

20 CHAPTER 6. QUANTUM COMPUTATION

and the space requirement scales as

S ' n` ' `
log T

log `
. (6.55)

Thus, for any fixed ε > 0, we can attain S scaling like logT , and a slowdown
no worse than (Tirr)

1+ε. (This is not the optimal way to play the Pebble game
if our objective is to get as far as we can with as few pebbles as possible. We
use more pebbles to get to step T , but we get there faster.)

We have now seen that a reversible circuit can simulate a circuit com-
posed of irreversible gates efficiently — without requiring unreasonable mem-
ory resources or causing an unreasonable slowdown. Why is this important?
You might worry that, because reversible computation is “harder” than ir-
reversible computation, the classification of complexity depends on whether
we compute reversibly or irreversibly. But this is not the case, because a
reversible computer can simulate an irreversible computer pretty easily.

6.2 Quantum Circuits

Now we are ready to formulate a mathematical model of a quantum com-
puter. We will generalize the circuit model of classical computation to the
quantum circuit model of quantum computation.

A classical computer processes bits. It is equipped with a finite set of
gates that can be applied to sets of bits. A quantum computer processes
qubits. We will assume that it too is equipped with a discrete set of funda-
mental components, called quantum gates. Each quantum gate is a unitary
transformation that acts on a fixed number of qubits. In a quantum com-
putation, a finite number n of qubits are initially set to the value |00 . . . 0〉.
A circuit is executed that is constructed from a finite number of quantum
gates acting on these qubits. Finally, a Von Neumann measurement of all the
qubits (or a subset of the qubits) is performed, projecting each onto the basis
{|0〉, |1〉}. The outcome of this measurement is the result of the computation.

Several features of this model require comment:

(1) It is implicit but important that the Hilbert space of the device has a pre-
ferred decomposition into a tensor product of low-dimensional spaces,
in this case the two-dimensional spaces of the qubits. Of course, we
could have considered a tensor product of, say, qutrits instead. But

6.2. QUANTUM CIRCUITS 21

anyway we assume there is a natural decomposition into subsystems
that is respected by the quantum gates — which act on only a few
subsystems at a time. Mathematically, this feature of the gates is cru-
cial for establishing a clearly defined notion of quantum complexity.
Physically, the fundamental reason for a natural decomposition into
subsystems is locality; feasible quantum gates must act in a bounded
spatial region, so the computer decomposes into subsystems that inter-
act only with their neighbors.

(2) Since unitary transformations form a continuum, it may seem unneces-
sarily restrictive to postulate that the machine can execute only those
quantum gates chosen from a discrete set. We nevertheless accept such
a restriction, because we do not want to invent a new physical imple-
mentation each time we are faced with a new computation to perform.

(3) We might have allowed our quantum gates to be superoperators, and our
final measurement to be a POVM. But since we can easily simulate a
superoperator by performing a unitary transformation on an extended
system, or a POVM by performing a Von Neumann measurement on
an extended system, the model as formulated is of sufficient generality.

(4) We might allow the final measurement to be a collective measurement,
or a projection into a different basis. But any such measurement can be
implemented by performing a suitable unitary transformation followed
by a projection onto the standard basis {|0〉, |1〉}n. Of course, compli-
cated collective measurements can be transformed into measurements
in the standard basis only with some difficulty, but it is appropriate to
take into account this difficulty when characterizing the complexity of
an algorithm.

(5) We might have allowed measurements at intermediate stages of the
computation, with the subsequent choice of quantum gates conditioned
on the outcome of those measurements. But in fact the same result
can always be achieved by a quantum circuit with all measurements
postponed until the end. (While we can postpone the measurements in
principle, it might be very useful in practice to perform measurements
at intermediate stages of a quantum algorithm.)

A quantum gate, being a unitary transformation, is reversible. In fact, a
classical reversible computer is a special case of a quantum computer. A

22 CHAPTER 6. QUANTUM COMPUTATION

classical reversible gate

x(n) → y(n) = f(x(n)), (6.56)

implementing a permutation of n-bit strings, can be regarded as a unitary
transformation that acts on the “computational basis {|xi〉} according to

U : |xi〉 → |yi〉. (6.57)

This action is unitary because the 2n strings |yi〉 are all mutually orthogonal.
A quantum computation constructed from such classical gates takes |0 . . . 0〉
to one of the computational basis states, so that the final measurement is
deterministic.

There are three main issues concerning our model that we would like to
address. The first issue is universality. The most general unitary transfor-
mation that can be performed on n qubits is an element of U(2n). Our model
would seem incomplete if there were transformations in U(2n) that we were
unable to reach. In fact, we will see that there are many ways to choose a
discrete set of universal quantum gates. Using a universal gate set we can
construct circuits that compute a unitary transformation that comes as close
as we please to any element in U(2n).

Thanks to universality, there is also a machine independent notion of
quantum complexity. We may define a new complexity classBQP — the class
of decision problems that can be solved, with high probability, by polynomial-
size quantum circuits. Since one universal quantum computer can simulate
another efficiently, the class does not depend on the details of our hardware
(on the universal gate set that we have chosen).

Notice that a quantum computer can easily simulate a probabilistic clas-
sical computer: it can prepare 1√

2
(|0〉 + |1〉) and then project to {|0〉, |1〉},

generating a random bit. Therefore BQP certainly contains the class BPP .
But as we discussed in Chapter 1, it seems to be quite reasonable to expect
that BQP is actually larger than BPP , because a probabilistic classical
computer cannot easily simulate a quantum computer. The fundamental dif-
ficulty is that the Hilbert space of n qubits is huge, of dimension 2n, and
hence the mathematical description of a typical vector in the space is ex-
ceedingly complex. Our second issue is to better characterize the resources
needed to simulate a quantum computer on a classical computer. We will see
that, despite the vastness of Hilbert space, a classical computer can simulate
an n-qubit quantum computer even if limited to an amount of memory space

6.2. QUANTUM CIRCUITS 23

that is polynomial in n. This means the BQP is contained in the complexity
class PSPACE, the decision problems that can be solved with polynomial
space, but may require exponential time. (We know that NP is also con-
tained in PSPACE, since checking if C(x(n), y(m)) = 1 for each y(m) can be
accomplished with polynomial space.5

The third important issue we should address is accuracy. The class BQP
is defined formally under the idealized assumption that quantum gates can be
executed with perfect precision. Clearly, it is crucial to relax this assumption
in any realistic implementation of quantum computation. A polynomial size
quantum circuit family that solves a hard problem would not be of much
interest if the quantum gates in the circuit were required to have exponential
accuracy. In fact, we will show that this is not the case. An idealized T -gate
quantum circuit can be simulated with acceptable accuracy by noisy gates,
provided that the error probability per gate scales like 1/T .

We see that quantum computers pose a serious challenge to the strong
Church–Turing thesis, which contends that any physically reasonable model
of computation can be simulated by probabilistic classical circuits with at
worst a polynomial slowdown. But so far there is no firm proof that

BPP 6= BQP. (6.58)

Nor is such a proof necessarily soon to be expected.6 Indeed, a corollary
would be

BPP 6= PSPACE, (6.59)

which would settle one of the long-standing and pivotal open questions in
complexity theory.

It might be less unrealistic to hope for a proof that BPP 6= BQP follows
from another standard conjecture of complexity theory such as P 6= NP . So
far no such proof has been found. But while we are not yet able to prove
that quantum computers have capabilities far beyond those of conventional
computers, we nevertheless might uncover evidence suggesting that BPP 6=
BQP . We will see that there are problems that seem to be hard (in classical
computation) yet can be efficiently solved by quantum circuits.

5Actually there is another rung of the complexity hierarchy that may separate BQP
and PSPACE; we can show that BQP ⊆ P #P ⊆ PSPACE, but we won’t consider P #P

any further here.
6That is, we ought not to expect a “nonrelativized proof.” A separation between BPP

and BQP “relative to an oracle” will be established later in the chapter.

24 CHAPTER 6. QUANTUM COMPUTATION

Thus it seems likely that the classification of complexity will be different
depending on whether we use a classical computer or a quantum computer
to solve a problem. If such a separation really holds, it is the quantum
classification that should be regarded as the more fundamental, for it is
better founded on the physical laws that govern the universe.

6.2.1 Accuracy

Let’s discuss the issue of accuracy. We imagine that we wish to implement
a computation in which the quantum gates U1,U2, . . . ,UT are applied se-
quentially to the initial state |ϕ0〉. The state prepared by our ideal quantum
circuit is

|ϕT 〉 = UTUT−1 . . .U 2U 1|ϕ0〉. (6.60)

But in fact our gates do not have perfect accuracy. When we attempt to ap-
ply the unitary transformation U t, we instead apply some “nearby” unitary
transformation Ũ t. (Of course, this is not the most general type of error that
we might contemplate – the unitary U t might be replaced by a superoperator.
Considerations similar to those below would apply in that case, but for now
we confine our attention to “unitary errors.”)

The errors cause the actual state of the computer to wander away from
the ideal state. How far does it wander? Let |ϕt〉 denote the ideal state after
t quantum gates are applied, so that

|ϕt〉 = U t|ϕt−1〉. (6.61)

But if we apply the actual transformation Ũ t, then

Ũ t|ϕt−1〉 = |ϕt〉 + |Et〉, (6.62)

where

|Et〉 = (Ũ t − U t)|ϕt−1〉, (6.63)

is an unnormalized vector. If |ϕ̃t〉 denotes the actual state after t steps, then
we have

|ϕ̃1〉 = |ϕ1〉 + |E1〉,
|ϕ̃2〉 = Ũ 2|ϕ̃1〉 = |ϕ2〉 + |E2〉 + Ũ 2|E1〉, (6.64)

6.2. QUANTUM CIRCUITS 25

and so forth; we ultimately obtain

|ϕ̃T 〉 = |ϕT 〉 + |ET 〉 + ŨT |ET−1〉 + ŨT ŨT−1|ET−2〉
+ . . .+ ŨT ŨT−1 . . . Ũ 2|E1〉. (6.65)

Thus we have expressed the difference between |ϕ̃T 〉 and |ϕT 〉 as a sum of T
remainder terms. The worst case yielding the largest deviation of |ϕ̃T 〉 from
|ϕT 〉 occurs if all remainder terms line up in the same direction, so that the
errors interfere constructively. Therefore, we conclude that

‖ |ϕ̃T 〉 − |ϕT 〉 ‖ ≤ ‖ |ET 〉 ‖ + ‖ |ET−1〉 ‖
+ . . .+ ‖ |E2〉 ‖ + ‖ |E1〉 ‖, (6.66)

where we have used the property ‖ U |Ei〉 ‖=‖ |Ei〉 ‖ for any unitary U .
Let ‖ A ‖sup denote the sup norm of the operator A — that is, the

maximum modulus of an eigenvalue of A. We then have

‖ |Et〉 ‖=‖
(

Ũ t − U t

)

|ϕt−1〉 ‖≤‖ Ũ t − U t ‖sup (6.67)

(since |ϕt−1〉 is normalized). Now suppose that, for each value of t, the error
in our quantum gate is bounded by

‖ Ũ t − U t ‖sup< ε. (6.68)

Then after T quantum gates are applied, we have

‖ |ϕ̃T 〉 − |ϕT 〉 ‖< Tε; (6.69)

in this sense, the accumulated error in the state grows linearly with the length
of the computation.

The distance bounded in eq. (6.68) can equivalently be expressed as ‖
W t−1 ‖sup, where W t = Ũ tU

†
t . Since W t is unitary, each of its eigenvalues

is a phase eiθ, and the corresponding eigenvalue of W t − 1 has modulus

|eiθ − 1| = (2 − 2 cos θ)1/2, (6.70)

so that eq. (6.68) is the requirement that each eigenvalue satisfies

cos θ > 1 − ε2/2, (6.71)

26 CHAPTER 6. QUANTUM COMPUTATION

(or |θ| <∼ε, for ε small). The origin of eq. (6.69) is clear. In each time step,
|ϕ̃〉 rotates relative to |ϕ〉 by (at worst) an angle of order ε, and the distance
between the vectors increases by at most of order ε.

How much accuracy is good enough? In the final step of our computation,
we perform an orthogonal measurement, and the probability of outcome a,
in the ideal case, is

P (a) = |〈a|ϕT 〉|2. (6.72)

Because of the errors, the actual probability is

P̃ (a) = |〈a|ϕ̃T 〉|2. (6.73)

If the actual vector is close to the ideal vector, then the probability distribu-
tions are close, too. If we sum over an orthonormal basis {|a〉}, we have

∑

a

|P̃ (a) − P (a)| ≤ 2 ‖ |ϕ̃T 〉 − |ϕT 〉 ‖, (6.74)

as you will show in a homework exercise. Therefore, if we keep Tε fixed (and
small) as T gets large, the error in the probability distribution also remains
fixed. In particular, if we have designed a quantum algorithm that solves a
decision problem correctly with probability greater 1

2
+ δ (in the ideal case),

then we can achieve success probability greater than 1
2

with our noisy gates,
if we can perform the gates with an accuracy Tε < O(δ). A quantum circuit
family in the BQP class can really solve hard problems, as long as we can
improve the accuracy of the gates linearly with the computation size T .

6.2.2 BQP ⊆ PSPACE

Of course a classical computer can simulate any quantum circuit. But how
much memory does the classical computer require? Naively, since the simu-
lation of an n-qubit circuit involves manipulating matrices of size 2n, it may
seem that an amount of memory space exponential in n is needed. But we
will now show that the simulation can be done to acceptable accuracy (albeit
very slowly!) in polynomial space. This means that the quantum complexity
class BQP is contained in the class PSPACE of problems that can be solved
with polynomial space.

The object of the classical simulation is to compute the probability for
each possible outcome a of the final measurement

Prob(a) = |〈a|UT |0〉|2, (6.75)

6.2. QUANTUM CIRCUITS 27

where

UT = UT UT−1 . . .U2U 1, (6.76)

is a product of T quantum gates. Each U t, acting on the n qubits, can be
represented by a 2n×2n unitary matrix, characterized by the complex matrix
elements

〈y|U t|x〉, (6.77)

where x, y ∈ {0, 1 . . . , 2n − 1}. Writing out the matrix multiplication explic-
itly, we have

〈a|UT |0〉 =
∑

{xt}
〈a|UT |xT−1〉〈xT−1|UT−1|xT−2〉 . . .

. . . 〈x2|U2|x1〉〈x1|U1|0〉. (6.78)

Eq. (6.78) is a sort of “path integral” representation of the quantum compu-
tation – the probability amplitude for the final outcome a is expressed as a
coherent sum of amplitudes for each of a vast number (2n(T−1)) of possible
computational paths that begin at 0 and terminate at a after T steps.

Our classical simulator is to add up the 2n(T−1) complex numbers in
eq. (6.78) to compute 〈a|UT |0〉. The first problem we face is that finite size
classical circuits do integer arithmetic, while the matrix elements 〈y|U t|x〉
need not be rational numbers. The classical simulator must therefore settle
for an approximate calculation to reasonable accuracy. Each term in the sum
is a product of T complex factors, and there are 2n(T−1) terms in the sum.
The accumulated errors are sure to be small if we express the matrix elements
to m bits of accuracy, with m large compared to n(T − 1). Therefore, we
can replace each complex matrix element by pairs of signed integers, taking
values in {0, 1, 2, . . . , 2m−1}. These integers give the binary expansion of the
real and imaginary part of the matrix element, expressed to precision 2−m.

Our simulator will need to compute each term in the sum eq. (6.78)
and accumulate a total of all the terms. But each addition requires only a
modest amount of scratch space, and furthermore, since only the accumulated
subtotal need be stored for the next addition, not much space is needed to
sum all the terms, even though there are exponentially many.

So it only remains to consider the evaluation of a typical term in the
sum, a product of T matrix elements. We will require a classical circuit that

28 CHAPTER 6. QUANTUM COMPUTATION

evaluates

〈y|U t|x〉; (6.79)

this circuit accepts the 2n bit input (x, y), and outputs the 2m-bit value of
the (complex) matrix element. Given a circuit that performs this function, it
will be easy to build a circuit that multiplies the complex numbers together
without using much space.

Finally, at this point, we appeal to the properties we have demanded of
our quantum gate set — the gates from a discrete set, and each gate acts on
a bounded number of qubits. Because there are a fixed (and finite) number
of gates, there are only a fixed number of gate subroutines that our simulator
needs to be able to call. And because the gate acts on only a few qubits,
nearly all of its matrix elements vanish (when n is large), and the value
〈y|U |x〉 can be determined (to the required accuracy) by a simple circuit
requiring little memory.

For example, in the case of a single-qubit gate acting on the first qubit,
we have

〈y1y2 . . . yn|U |x1x2 . . . xn〉 = 0 if x2x3 . . . xn 6= y2y3 . . . yn.
(6.80)

A simple circuit can compare x2 with y2, x3 with y3, etc., and output zero if
the equality is not satisfied. In the event of equality, the circuit outputs one
of the four complex numbers

〈y1|U |x1〉, (6.81)

to m bits of precision. A simple circuit can encode the 8m bits of this
2×2 complex-valued matrix. Similarly, a simple circuit, requiring only space
polynomial in n and m, can evaluate the matrix elements of any gate of fixed
size.

We conclude that a classical computer with space bounded above by
poly(n) can simulate an n-qubit universal quantum computer, and therefore
that BQP ⊆ PSPACE. Of course, it is also evident that the simulation we
have described requires exponential time, because we need to evaluate the
sum of 2n(T−1) complex numbers. (Actually, most of the terms vanish, but
there are still an exponentially large number of nonvanishing terms.)

6.2. QUANTUM CIRCUITS 29

6.2.3 Universal quantum gates

We must address one more fundamental question about quantum computa-
tion; how do we construct an adequate set of quantum gates? In other words,
what constitutes a universal quantum computer?

We will find a pleasing answer. Any generic two-qubit gate suffices for
universal quantum computation. That is, for all but a set of measure zero
of 4 × 4 unitary matrices, if we can apply that matrix to any pair of qubits,
then we can construct an n-qubit circuit that computes a transformation
that comes as close as we please to any element of U(2n).

Mathematically, this is not a particularly deep result, but physically it
is very interesting. It means that, in the quantum world, as long as we can
devise a generic interaction between two qubits, and we can implement that
interaction accurately between any two qubits, we can compute anything,
no matter how complex. Nontrivial computation is ubiquitous in quantum
theory.

Aside from this general result, it is also of some interest to exhibit partic-
ular universal gate sets that might be particularly easy to implement physi-
cally. We will discuss a few examples.

There are a few basic elements that enter the analysis of any universal
quantum gate set.

(1) Powers of a generic gate

Consider a “generic” k-qubit gate. This is a 2k × 2k unitary matrix
U with eigenvalues eiθ1 , eiθ2, . . . eiθ

2k . For all but a set of measure zero
of such matrices, each θi is an irrational multiple of π, and all the θi’s
are incommensurate (each θi/θj is also irrational). The positive integer
power Un of U has eigenvalues

einθ1 , einθ2 , . . . , einθ
2k . (6.82)

Each such list of eigenvalues defines a point in a 2k-dimensional torus
(the product of 2k circles). As n ranges over positive integer values,
these points densely fill the whole torus, if U is generic. If U = eiA,
positive integer powers of U come as close as we please to U(λ) = eiλA,
for any real λ. We say that any U(λ) is reachable by positive integer
powers of U .

(2) Switching the leads

30 CHAPTER 6. QUANTUM COMPUTATION

There are a few (classical) transformations that we can implement just
by switching the labels on k qubits, or in other words, by applying the
gate U to the qubits in a different order. Of the (2k)! permutations
of the length-k strings, k! can be realized by swapping qubits. If a
gate applied to k qubits with a standard ordering is U , and P is a
permutation implemented by swapping qubits, then we can construct
the gate

U ′ = PUP−1, (6.83)

just by switching the leads on the gate. For example, swapping two
qubits implements the transposition

P : |01〉 ↔ |10〉, (6.84)

or

P =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, (6.85)

acting on basis {|00〉, |01〉, |10〉, |11〉}. By switching leads, we obtain a
gate

U ′ = P U P−1

We can also construct any positive integer power of U ′, (PUP−1)n =
PUnP−1.

(3) Completing the Lie algebra

We already remarked that if U = eiA is generic, then powers of U are
dense in the torus {eiλA}. We can further argue that if U = eiA and
U ′ = eiB are generic gates, we can compose them to come arbitrarily
close to

ei(αA+βB) or e−γ[A,B], (6.86)

6.2. QUANTUM CIRCUITS 31

for any real α, β, γ. Thus, the “reachable” transformations have a
closed Lie algebra. We say that U = eiA is generated by A; then if
A and B are both generic generators of reachable transformations, so
are real linear combinations of A and B, and (i times) the commutator
of A and B.

We first note that

lim
n→∞(eiαA/neiβB/n)n = lim

n→∞

(

1 +
i

n
(αA + βB)

)n

= ei(αA+βB). (6.87)

Therefore, any ei(αA+βB) is reachable if each eiαA/n and eiβB/n is. Fur-
thermore

lim
n→∞

(

eiA/
√

neiB/
√

ne−iA/
√

ne−iB/
√

n
)n

= lim
n→∞

[

1 − 1

n
(AB − BA)

]n

= e−[A,B], (6.88)

so e−[A,B] is also reachable.

By invoking the observations (1), (2), and (3) above, we will be able to
show that a generic two-qubit gate is universal.

Deutsch gate. It was David Deutsch (1989) who first pointed out the
existence of a universal quantum gate. Deutsch’s three-bit universal gate
is a quantum cousin of the Toffoli gate. It is the controlled-controlled-R
transformation

s

s

R

that applies R to the third qubit if the first two qubits have the value 1;
otherwise it acts trivially. Here

R = −iRx(θ) = (−i) exp

(

i
θ

2
σx

)

= (−i)
(

cos
θ

2
+ iσx sin

θ

2

)

(6.89)

is, up to a phase, a rotation by θ about the x-axis, where θ is a particular
angle incommensurate with π.

32 CHAPTER 6. QUANTUM COMPUTATION

The nth power of the Deutsch gate is the controlled-controlled-Rn. In
particular, R4 = Rx(4θ), so that all one-qubit transformations generated by
σx are reachable by integer powers of R. Furthermore the (4n+ 1)st power
is

(−i)
[

cos
(4n + 1)θ

2
+ iσx sin

(4n + 1)θ

2

]

, (6.90)

which comes as close as we please to σx. Therefore, the Toffoli gate is
reachable with integer powers of the Deutsch gate, and the Deutsch gate is
universal for classical computation.

Acting on the three-qubit computational basis

{|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}, (6.91)

the generator of the Deutsch gate transposes the last two elements

|110〉 ↔ |111〉. (6.92)

We denote this 8 × 8 matrix as

(σx)67 =

0 0

0 σx

. (6.93)

With Toffoli gates, we can perform any permutation of these eight elements,
in particular

P = (6m)(7n), (6.94)

for any m and n. So we can also reach any transformation generated by

P (σx)67P = (σx)mn. (6.95)

Furthermore,

[(σx)56, (σx)67] =

0 1 0
1 0 0
0 0 0

 ,

0 0 0
0 0 1
0 1 0

 =

0 0 1
0 0 0
−1 0 0

 = i(σy)57,
(6.96)

6.2. QUANTUM CIRCUITS 33

and similarly, we can reach any unitary generated by (σy)mn. Finally

[(σx)mn, (σy)mn] = i(σz)mn, (6.97)

So we can reach any transformation generated by a linear combination of the
(σx,y,z)mn’s. These span the whole SU(8) Lie Algebra, so we can generate
any three-qubit unitary (aside from an irrelevant overall phase).

Now recall that we have already found that we can construct the n-bit
Toffoli gate by composing three-bit Toffoli gates. The circuit

|0〉

s

s

g s

s

R

s

s

g

uses one scratch bit to construct a four-bit Deutsch gate ((controlled)3-R)
from the three-bit Deutsch gate and two three-bit Toffoli gates, and a similar
circuit constructs the n-bit Deutsch gate from a three-bit Deutsch gate and
two (n − 1)-bit Toffoli gates. Once we have an n-bit Deutsch gate, and
universal classical computation, exactly the same argument as above shows
that we can reach any transformation in SU(2n).

Universal two-qubit gates. For reversible classical computation, we
saw that three-bit gates are needed for universality. But in quantum compu-
tation, two-bit gates turn out to be adequate. Since we already know that the
Deutsch gate is universal, we can establish this by showing that the Deutsch
gate can be constructed by composing two-qubit gates.

In fact, if

U

s

34 CHAPTER 6. QUANTUM COMPUTATION

denotes the controlled-U gate (the 2 × 2 unitary U is applied to the second
qubit if the first qubit is 1; otherwise the gate acts trivially) then a controlled-
controlled-U2 gate is obtained from the circuit

x

y

x

y

x

y

s

s

U2

= s

U

s

g s

U †

s

g

s

U

the power of U applied to the third qubit is

y − (x⊕ y) + x = x+ y − (x+ y − 2xy) = 2xy. (6.98)

Therefore, we can construct Deutsch’s gate from the controlled-U , controlled
U−1 and controlled-NOT gates, where

U 2 = −iRx(θ); (6.99)

we may choose

U = e−i π
4 Rx

(

θ

2

)

. (6.100)

Positive powers of U came as close as we please to σx and U−1, so from
the controlled-U alone we can construct the Deutsch gate. Therefore, the
controlled-

(

e−i π
4 Rx

(

θ
2

))

is itself a universal gate, for θ/π irrational.

(Note that the above construction shows that, while we cannot construct
the Toffoli gate from two-bit reversible classical gates, we can construct it
from a controlled “square root of NOT” — a controlled-U with U 2 = σx.)

Generic two-bit gates. Now we have found particular two-bit gates
(controlled rotations) that are universal gates. Therefore, for universality, it
is surely sufficient if we can construct transformations that are dense in the
U(4) acting on a pair of qubits.

In fact, though, any generic two-qubit gate is sufficient to generate all of

U(4). As we have seen, if eiA is a generic element of U(4), we can reach
any transformation generated by A. Furthermore, we can reach any trans-
formations generated by an element of the minimal Lie algebra containing A

and

B = PAP−1 (6.101)

6.2. QUANTUM CIRCUITS 35

where P is the permutation (|01〉 ↔ |10〉) obtained by switching the leads.
Now consider a general A, (expanded in terms of a basis for the Lie

algebra of U(4)), and consider a particular scheme for constructing 16 ele-
ments of the algebra by successive commutations, starting from A and B.
The elements so constructed are linearly independent (and it follows that
any transformation in U(4) is reachable) if the determinant of a particular
16× 16 matrix vanishes. Unless this vanishes identically, its zeros occur only
on a submanifold of vanishing measure. But in fact, we can choose, say

A = (αI + βσx + γσy)23, (6.102)

(for incommensurate α, β, γ), and show by explicit computation that the
entire 16-dimension Lie Algebra is actually generated by successive commu-
tations, starting with A and B. Hence we conclude that failure to generate
the entire U(4) algebra is nongeneric, and find that almost all two-qubit gates
are universal.

Other adequate sets of gates. One can also see that universal quan-
tum computation can be realized with a gate set consisting of classical multi-
qubit gates and quantum single-qubit gates. For example, we can see that
the XOR gate, combined with one-qubit gates, form a universal set. Consider
the circuit

x x

A g B g C

s s

which applies ABC to the second qubit if x = 0, and AσxBσxC to the
second qubit if x = 1. If we can find A,B,C such that

ABC = 1

AσxBσxC = U , (6.103)

then this circuit functions as a controlled-U gate. In fact unitary 2 × 2
A,B,C with this property exist for any unitary U with determinant one
(as you’ll show in an exercise). Therefore, the XOR plus arbitrary one-qubit
transformations form a universal set. Of course, two generic (noncommuting)
one-qubit transformations are sufficient to reach all. In fact, with an XOR

36 CHAPTER 6. QUANTUM COMPUTATION

and a single generic one-qubit rotation, we can construct a second one-qubit
rotation that does not commute with the first. Hence, an XOR together with
just one generic single-qubit gate constitutes a universal gate set.

If we are able to perform a Toffoli gate, then even certain nongeneric
one-qubit transformations suffice for universal computation. For example
(another exercise) the Toffoli gate, together with π/2 rotations about the x
and z axes, are a universal set.

Precision. Our discussion of universality has focused on reachability
without any regard for complexity. We have only established that we can
construct a quantum circuit that comes as close as we please to a desired
element of U(2n), and we have not considered the size of the circuit that we
need. But from the perspective of quantum complexity theory, universality is
quite significant because it implies that one quantum computer can simulate
another to reasonable accuracy without an unreasonable slowdown.

Actually, we have not been very precise up until now about what it means
for one unitary transformation to be “close” to another; we should define a
topology. One possibility is to use the sup norm as in our previous discussion
of accuracy — the distance between matrices U and W is then ‖ U−W ‖sup.
Another natural topology is associated with the inner product

〈W |U 〉 ≡ tr W †U (6.104)

(if U and W are N × N matrices, this is just the usual inner product on
CN2

, where we regard U ij as a vector with N2 components). Then we may
define the distance squared between matrices as

‖ U − W ‖2≡ 〈U − W |U − W 〉. (6.105)

For the purpose of analyzing complexity, just about any reasonable topology
will do.

The crucial point is that given any universal gate set, we can reach within
distance ε of any desired unitary transformation that acts on a fixed num-
ber of qubits, using a quantum circuit whose size is bounded above by a
polynomial in ε−1. Therefore, one universal quantum computer can simulate
another, to accuracy ε, with a slowdown no worse than a factor that is poly-
nomial in ε−1. Now we have already seen that to have a high probability of
getting the right answer when we perform a quantum circuit of size T , we
should implement each quantum gate to an accuracy that scales like T−1.
Therefore, if you have a quantum circuit family of polynomial size that runs

6.3. SOME QUANTUM ALGORITHMS 37

on your quantum computer, I can devise a polynomial size circuit family that
runs on my machine, and that emulates your machine to acceptable accuracy.

Why can a poly(ε−1)-size circuit reach a given k-qubit U to within dis-
tance ε? We know for example that the positive integer powers of a generic

k-qubit eiA are dense in the 2k-torus {eiλA}. The region of the torus within
distance ε of any given point has volume of order ε2k

, so (asymptotically

for ε sufficiently small) we can reach any {eiλA} to within distance ε with
(

eiλA
)n

, for some integer n of order ε−2k

. We also know that we can ob-

tain transformations {eiAa} where the Aa’s span the full U(2k) Lie algebra,
using circuits of fixed size (independent of ε). We may then approach any
exp (i

∑

a αaAa) as in eq. (6.87), also with polynomial convergence.
In principle, we should be able to do much better, reaching a desired

k-qubit unitary within distance ε using just poly(log(ε−1)) quantum gates.
Since the number of size-T circuits that we can construct acting on k qubits
is exponential in T , and the circuits fill U(2k) roughly uniformly, there should
be a size-T circuit reaching within a distance of order e−T of any point in
U(2k). However, it might be a computationally hard problem classically
to work out the circuit that comes exponentially close to the unitary we are
trying to reach. Therefore, it would be dishonest to rely on this more efficient
construction in an asymptotic analysis of quantum complexity.

6.3 Some Quantum Algorithms

While we are not yet able to show that BPP 6= BQP , there are three ap-
proaches that we can pursue to study the differences between the capabilities
of classical and quantum computers:

(1) Nonexponential speedup. We can find quantum algorithms that are
demonstrably faster than the best classical algorithm, but not expo-
nentially faster. These algorithms shed no light on the conventional
classification of complexity. But they do demonstrate a type of separa-
tion between tasks that classical and quantum computers can perform.
Example: Grover’s quantum speedup of the search of an unsorted data
base.

(2) “Relativized” exponential speedup. We can consider the problem of
analyzing the contents of a “quantum black box.” The box performs an

38 CHAPTER 6. QUANTUM COMPUTATION

a priori unknown) unitary transformation. We can prepare an input
for the box, and we can measure its output; our task is to find out
what the box does. It is possible to prove that quantum black boxes
(computer scientists call them oracles7) exist with this property: By
feeding quantum superpositions to the box, we can learn what is inside
with an exponential speedup, compared to how long it would take if we
were only allowed classical inputs. A computer scientist would say that
BPP 6= BQP “relative to the oracle.” Example: Simon’s exponential
quantum speedup for finding the period of a 2 to 1 function.

(3) Exponential speedup for “apparently” hard problems. We can
exhibit a quantum algorithm that solves a problem in polynomial time,
where the problem appears to be hard classically, so that it is strongly
suspected (though not proved) that the problem is not in BPP . Ex-
ample: Shor’s factoring algorithm.

Deutsch’s problem. We will discuss examples from all three approaches.
But first, we’ll warm up by recalling an example of a simple quantum algo-
rithm that was previously discussed in §1.5: Deutsch’s algorithm for dis-
tinguishing between constant and balanced functions f : {0, 1} → {0, 1}.
We are presented with a quantum black box that computes f(x); that is, it
enacts the two-qubit unitary transformation

Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉, (6.106)

which flips the second qubit iff f(first qubit) = 1. Our assignment is to
determine whether f(0) = f(1). If we are restricted to the “classical” inputs
|0〉 and |1〉, we need to access the box twice (x = 0 and x = 1) to get the
answer. But if we are allowed to input a coherent superposition of these
“classical” states, then once is enough.

The quantum circuit that solves the problem (discussed in §1.5) is:

|0〉

|1〉

MeasureH

H Uf

Hs

7The term “oracle” signifies that the box responds to a query immediately; that is, the
time it takes the box to operate is not included in the complexity analysis.

6.3. SOME QUANTUM ALGORITHMS 39

Here H denotes the Hadamard transform

H : |x〉 → 1√
2

∑

y

(−1)xy|y〉, (6.107)

or

H : |0〉 → 1√
2
(|0〉 + |1〉)

|1〉 → 1√
2
(|0〉 − |1〉); (6.108)

that is, H is the 2 × 2 matrix

H :

(1√
2

1√
2

1√
2

− 1√
2

)

. (6.109)

The circuit takes the input |0〉|1〉 to

|0〉|1〉 →1

2
(|0〉 + |1〉)(|0〉 − |1〉)

→1

2

(

(−1)f(0)|0〉 + (−1)f(1)|1〉
)

(|0〉 − |1〉)

→1

2

(

(−1)f(0) + (−1)f(1)
)

|0〉

+
(

(−1)f(0) − (−1)f(1)
)

|1〉

1√
2
(|0〉 − |1〉).

(6.110)

Then when we measure the first qubit, we find the outcome |0〉 with prob-
ability one if f(0) = f(1) (constant function) and the outcome |1〉 with
probability one if f(0) 6= f(1) (balanced function).

A quantum computer enjoys an advantage over a classical computer be-
cause it can invoke quantum parallelism. Because we input a superposition
of |0〉 and |1〉, the output is sensitive to both the values of f(0) and f(1),
even though we ran the box just once.

Deutsch–Jozsa problem. Now we’ll consider some generalizations of
Deutsch’s problem. We will continue to assume that we are to analyze a
quantum black box (“quantum oracle”). But in the hope of learning some-
thing about complexity, we will imagine that we have a family of black boxes,

40 CHAPTER 6. QUANTUM COMPUTATION

with variable input size. We are interested in how the time needed to find
out what is inside the box scales with the size of the input (where “time” is
measured by how many times we query the box).

In the Deutsch–Jozsa problem, we are presented with a quantum black
box that computes a function taking n bits to 1,

f : {0, 1}n → {0, 1}, (6.111)

and we have it on good authority that f is either constant (f(x) = c for all
x) or balanced (f(x) = 0 for exactly 1

2
of the possible input values). We are

to solve the decision problem: Is f constant or balanced?
In fact, we can solve this problem, too, accessing the box only once, using

the same circuit as for Deutsch’s problem (but with x expanded from one
bit to n bits). We note that if we apply n Hadamard gates in parallel to
n-qubits.

H(n) = H ⊗ H ⊗ . . .⊗ H , (6.112)

then the n-qubit state transforms as

H(n) : |x〉 →
n
∏

i=1

1√
2

∑

yi={0,1}
(−1)xiyi |yi〉

 ≡ 1

2n/2

2n−1
∑

y=0

(−1)x·y|y〉,
(6.113)

where x, y represent n-bit strings, and x · y denotes the bitwise AND (or mod
2 scalar product)

x · y = (x1 ∧ y1) ⊕ (x2 ∧ y2) ⊕ . . .⊕ (xn ∧ yn). (6.114)

Acting on the input (|0〉)n|1〉, the action of the circuit is

(|0〉)n|1〉 →
(

1

2n/2

2n−1
∑

x=0

|x〉
)

1√
2
(|0〉 − |1〉)

→
(

1

2n/2

2n−1
∑

x=0

(−1)f(x)|x〉
)

1√
2
(|0〉 − |1〉)

→

1

2n

2n−1
∑

x=0

2n−1
∑

y=0

(−1)f(x)(−1)x·y|y〉

1√
2
(|0〉 − |1〉)

(6.115)

Now let us evaluate the sum

1

2n

2n−1
∑

x=0

(−1)f(x)(−1)x·y. (6.116)

6.3. SOME QUANTUM ALGORITHMS 41

If f is a constant function, the sum is

(−1)f(x)

(

1

2n

2n−1
∑

x=0

(−1)x·y
)

= (−1)f(x)δy,0; (6.117)

it vanishes unless y = 0. Hence, when we measure the n-bit register, we
obtain the result |y = 0〉 ≡ (|0〉)n with probability one. But if the function
is balanced, then for y = 0, the sum becomes

1

2n

2n−1

∑

x=0

(−1)f(x) = 0, (6.118)

(because half of the terms are (+1) and half are (−1)). Therefore, the prob-
ability of obtaining the measurement outcome |y = 0〉 is zero.

We conclude that one query of the quantum oracle suffices to distinguish
constant and balanced function with 100% confidence. The measurement
result y = 0 means constant, any other result means balanced.

So quantum computation solves this problem neatly, but is the problem
really hard classically? If we are restricted to classical input states |x〉, we
can query the oracle repeatedly, choosing the input x at random (without
replacement) each time. Once we obtain distinct outputs for two different
queries, we have determined that the function is balanced (not constant).
But if the function is in fact constant, we will not be certain it is constant
until we have submitted 2n−1+1 queries and have obtained the same response
every time. In contrast, the quantum computation gives a definite response
in only one go. So in this sense (if we demand absolute certainty) the classical
calculation requires a number of queries exponential in n, while the quantum
computation does not, and we might therefore claim an exponential quantum
speedup.

But perhaps it is not reasonable to demand absolute certainty of the
classical computation (particularly since any real quantum computer will be
susceptible to errors, so that the quantum computer will also be unable to
attain absolute certainty.) Suppose we are satisfied to guess balanced or
constant, with a probability of success

P (success) > 1 − ε. (6.119)

If the function is actually balanced, then if we make k queries, the probability
of getting the same response every time is p = 2−(k−1). If after receiving the

42 CHAPTER 6. QUANTUM COMPUTATION

same response k consecutive times we guess that the function is balanced,
then a quick Bayesian analysis shows that the probability that our guess is
wrong is 1

2k−1+1
(assuming that balanced and constant are a priori equally

probable). So if we guess after k queries, the probability of a wrong guess is

1 − P (success) =
1

2k−1(2k−1 + 1)
. (6.120)

Therefore, we can achieve success probability 1−ε for ε−1 = 2k−1(2k−1 +1) or

k ∼ 1
2
log

(

1
ε

)

. Since we can reach an exponentially good success probability
with a polynomial number of trials, it is not really fair to say that the problem
is hard.

Bernstein–Vazirani problem. Exactly the same circuit can be used
to solve another variation on the Deutsch–Jozsa problem. Let’s suppose that
our quantum black box computes one of the functions fa, where

fa(x) = a · x, (6.121)

and a is an n-bit string. Our job is to determine a.
The quantum algorithm can solve this problem with certainty, given just

one (n-qubit) quantum query. For this particular function, the quantum
state in eq. (6.115) becomes

1

2n

2n−1
∑

x=0

2n−1
∑

y=0

(−1)a·x(−1)x·y|y〉. (6.122)

But in fact

1

2n

2n−1
∑

x=0

(−1)a·x(−1)x·y = δa,y, (6.123)

so this state is |a〉. We can execute the circuit once and measure the n-qubit
register, finding the n-bit string a with probability one.

If only classical queries are allowed, we acquire only one bit of information
from each query, and it takes n queries to determine the value of a. Therefore,
we have a clear separation between the quantum and classical difficulty of
the problem. Even so, this example does not probe the relation of BPP
to BQP , because the classical problem is not hard. The number of queries
required classically is only linear in the input size, not exponential.

6.3. SOME QUANTUM ALGORITHMS 43

Simon’s problem. Bernstein and Vazirani managed to formulate a vari-
ation on the above problem that is hard classically, and so establish for the
first time a “relativized” separation between quantum and classical complex-
ity. We will find it more instructive to consider a simpler example proposed
somewhat later by Daniel Simon.

Once again we are presented with a quantum black box, and this time we
are assured that the box computes a function

f : {0, 1}n → {0, 1}n, (6.124)

that is 2-to-1. Furthermore, the function has a “period” given by the n-bit
string a; that is

f(x) = f(y) iff y = x⊕ a, (6.125)

where here ⊕ denotes the bitwise XOR operation. (So a is the period if we
regard x as taking values in (Z2)

n rather than Z2n.) This is all we know
about f . Our job is to determine the value of a.

Classically this problem is hard. We need to query the oracle an exponen-
tially large number of times to have any reasonable probability of finding a.
We don’t learn anything until we are fortunate enough to choose two queries
x and y that happen to satisfy x ⊕ y = a. Suppose, for example, that we
choose 2n/4 queries. The number of pairs of queries is less than (2n/4)2, and
for each pair {x, y}, the probability that x ⊕ y = a is 2−n. Therefore, the
probability of successfully finding a is less than

2−n(2n/4)2 = 2−n/2; (6.126)

even with exponentially many queries, the success probability is exponentially
small.

If we wish, we can frame the question as a decision problem: Either f
is a 1-1 function, or it is 2-to-1 with some randomly chosen period a, each
occurring with an a priori probability 1

2
. We are to determine whether the

function is 1-to-1 or 2-to-1. Then, after 2n/4 classical queries, our probability
of making a correct guess is

P (success) <
1

2
+

1

2n/2
, (6.127)

which does not remain bounded away from 1
2

as n gets large.

44 CHAPTER 6. QUANTUM COMPUTATION

But with quantum queries the problem is easy! The circuit we use is
essentially the same as above, but now both registers are expanded to n
qubits. We prepare the equally weighted superposition of all n-bit strings
(by acting on |0〉 with H(n)), and then we query the oracle:

Uf :

(

2n−1
∑

x=0

|x〉
)

|0〉 →
2n−1
∑

x=0

|x〉|f(x)〉. (6.128)

Now we measure the second register. (This step is not actually necessary,
but I include it here for the sake of pedagogical clarity.) The measurement
outcome is selected at random from the 2n−1 possible values of f(x), each
occurring equiprobably. Suppose the outcome is f(x0). Then because both
x0 and x0 ⊕ a, and only these values, are mapped by f to f(x0), we have
prepared the state

1√
2
(|x0〉 + |x0 ⊕ a〉) (6.129)

in the first register.
Now we want to extract some information about a. Clearly it would

do us no good to measure the register (in the computational basis) at this
point. We would obtain either the outcome x0 or x0 ⊕a, each occurring with
probability 1

2
, but neither outcome would reveal anything about the value of

a.
But suppose we apply the Hadamard transform H(n) to the register before

we measure:

H(n) :
1√
2
(|x0〉 + |x0 + a〉)

→ 1

2(n+1)/2

2n−1
∑

y=0

[

(−1)x0·y + (−1)(x0⊕a)·y
]

|y〉

=
1

2(n−1)/2

∑

a·y=0

(−1)x0·y|y〉. (6.130)

If a · y = 1, then the terms in the coefficient of |y〉 interfere destructively.
Hence only states |y〉 with a · y = 0 survive in the sum over y. The measure-
ment outcome, then, is selected at random from all possible values of y such
that a · y = 0, each occurring with probability 2−(n−1).

6.4. QUANTUM DATABASE SEARCH 45

We run this algorithm repeatedly, each time obtaining another value of y
satisfying y · a = 0. Once we have found n such linearly independent values
{y1, y2, y3 . . . yn} (that is, linearly independent over (Z2)

n), we can solve the
equations

y1 · a = 0

y2 · a = 0

...

yn · a = 0, (6.131)

to determine a unique value of a, and our problem is solved. It is easy to
see that with O(n) repetitions, we can attain a success probability that is
exponentially close to 1.

So we finally have found an example where, given a particular type of
quantum oracle, we can solve a problem in polynomial time by exploiting
quantum superpositions, while exponential time is required if we are limited
to classical queries. As a computer scientist might put it:

There exists an oracle relative to which BQP 6= BPP .

Note that whenever we compare classical and quantum complexity rela-
tive to an oracle, we are considering a quantum oracle (queries and replies
are states in Hilbert space), but with a preferred orthonormal basis. If we
submit a classical query (an element of the preferred basis) we always receive
a classical response (another basis element). The issue is whether we can
achieve a significant speedup by choosing more general quantum queries.

6.4 Quantum Database Search

The next algorithm we will study also exhibits, like Simon’s algorithm, a
speedup with respect to what can be achieved with a classical algorithm. But
in this case the speedup is merely quadratic (the quantum time scales like the
square root of the classical time), in contrast to the exponential speedup in
the solution to Simon’s problem. Nevertheless, the result (discovered by Lov
Grover) is extremely interesting, because of the broad utility of the algorithm.

46 CHAPTER 6. QUANTUM COMPUTATION

Heuristically, the problem we will address is: we are confronted by a
very large unsorted database containing N � 1 items, and we are to lo-
cate one particular item, to find a needle in the haystack. Mathemat-
ically, the database is represented by a table, or a function f(x), with
x ∈ {0, 1, 2, . . . , N − 1}. We have been assured that the entry a occurs
in the table exactly once; that is, that f(x) = a for only one value of x. The
problem is, given a, to find this value of x.

If the database has been properly sorted, searching for x is easy. Perhaps
someone has been kind enough to list the values of a in ascending order.
Then we can find x by looking up only log2N entries in the table. Let’s
suppose N ≡ 2n is a power of 2. First we look up f(x) for x = 2n−1 − 1, and
check if f(x) is greater than a. If so, we next look up f at x = 2n−2 − 1, etc.
With each table lookup, we reduce the number of candidate values of x by a
factor of 2, so that n lookups suffice to sift through all 2n sorted items. You
can use this algorithm to look up a number in the Los Angeles phone book,
because the names are listed in lexicographic order.

But now suppose that you know someone’s phone number, and you want
to look up her name. Unless you are fortunate enough to have access to
a reverse directory, this is a tedious procedure. Chances are you will need
to check quite a few entries in the phone book before you come across her
number.

In fact, if the N numbers are listed in a random order, you will need to
look up 1

2
N numbers before the probability is P = 1

2
that you have found

her number (and hence her name). What Grover discovered is that, if you
have a quantum phone book, you can learn her name with high probability
by consulting the phone book only about

√
N times.

This problem, too, can be formulated as an oracle or “black box” problem.
In this case, the oracle is the phone book, or lookup table. We can input
a name (a value of x) and the oracle outputs either 0, if f(x) 6= a, or 1, if
f(x) = a. Our task is to find, as quickly as possible, the value of x with

f(x) = a. (6.132)

Why is this problem important? You may have never tried to find in the
phone book the name that matches a given number, but if it weren’t so hard
you might try it more often! More broadly, a rapid method for searching an
unsorted database could be invoked to solve any problem in NP . Our oracle
could be a subroutine that interrogates every potential “witness” y that could

6.4. QUANTUM DATABASE SEARCH 47

potentially testify to certify a solution to the problem. For example, if we
are confronted by a graph and need to know if it admits a Hamiltonian path,
we could submit a path to the “oracle,” and it could quickly answer whether
the path is Hamiltonian or not. If we knew a fast way to query the oracle
about all the possible paths, we would be able to find a Hamiltonian path
efficiently (if one exists).

6.4.1 The oracle

So “oracle” could be shorthand for a subroutine that quickly evaluates a func-
tion to check a proposed solution to a decision problem, but let us continue
to regard the oracle abstractly, as a black box. The oracle “knows” that of
the 2n possible strings of length n, one (the “marked” string or “solution” ω)
is special. We submit a query x to the oracle, and it tells us whether x = ω
or not. It returns, in other words, the value of a function fω(x), with

fω(x) = 0, x 6= ω,

fω(x) = 1, x = ω. (6.133)

But furthermore, it is a quantum oracle, so it can respond to queries that are
superpositions of strings. The oracle is a quantum black box that implements
the unitary transformation

U fω : |x〉|y〉 → |x〉|y ⊕ fω(x)〉, (6.134)

where |x〉 is an n-qubit state, and |y〉 is a single-qubit state.
As we have previously seen in other contexts, we may choose the state of

the single-qubit register to be 1√
2
(|0〉 − |1〉), so that the oracle acts as

U fω : |x〉 1√
2
(|0〉 − |1〉)

→ (−1)fω(x)|x〉 1√
2
(|0〉 − |1〉). (6.135)

We may now ignore the second register, and obtain

Uω : |x〉 → (−1)fω(x)|x〉, (6.136)

or

Uω = 1 − 2|ω〉〈ω|. (6.137)

48 CHAPTER 6. QUANTUM COMPUTATION

The oracle flips the sign of the state |ω〉, but acts trivially on any state or-
thogonal to |ω〉. This transformation has a simple geometrical interpretation.
Acting on any vector in the 2n-dimensional Hilbert space, Uω reflects the vec-
tor about the hyperplane orthogonal to |ω〉 (it preserves the component in
the hyperplane, and flips the component along |ω〉).

We know that the oracle performs this reflection for some particular com-
putational basis state |ω〉, but we know nothing a priori about the value of
the string ω. Our job is to determine ω, with high probability, consulting
the oracle a minimal number of times.

6.4.2 The Grover iteration

As a first step, we prepare the state

|s〉 =
1√
N

(

N−1
∑

x=0

|x〉
)

, (6.138)

The equally weighted superposition of all computational basis states – this
can be done easily by applying the Hadamard transformation to each qubit
of the initial state |x = 0〉. Although we do not know the value of ω, we do
know that |ω〉 is a computational basis state, so that

|〈ω|s〉| =
1√
N
, (6.139)

irrespective of the value of ω. Were we to measure the state |s〉 by project-
ing onto the computational basis, the probability that we would “find” the
marked state |ω〉 is only 1

N
. But following Grover, we can repeatedly iterate

a transformation that enhances the probability amplitude of the unknown
state |ω〉 that we are seeking, while suppressing the amplitude of all of the
undesirable states |x 6= ω〉. We construct this Grover iteration by combining
the unknown reflection Uω performed by the oracle with a known reflection
that we can perform ourselves. This known reflection is

U s = 2|s〉〈s| − 1 , (6.140)

which preserves |s〉, but flips the sign of any vector orthogonal to |s〉. Geo-
metrically, acting on an arbitrary vector, it preserves the component along
|s〉 and flips the component in the hyperplane orthogonal to |s〉.

6.4. QUANTUM DATABASE SEARCH 49

We’ll return below to the issue of constructing a quantum circuit that
implements U s; for now let’s just assume that we can perform U s efficiently.

One Grover iteration is the unitary transformation

Rgrov = U sUω, (6.141)

one oracle query followed by our reflection. Let’s consider how Rgrov acts in
the plane spanned by |ω〉 and |s〉. This action is easiest to understand if we
visualize it geometrically. Recall that

|〈s|ω〉| =
1√
N

≡ sin θ, (6.142)

so that |s〉 is rotated by θ from the axis |ω⊥〉 normal to |ω〉 in the plane. Uω

reflects a vector in the plane about the axis |ω⊥〉, and U s reflects a vector
about the axis |s〉. Together, the two reflections rotate the vector by 2θ:

The Grover iteration, then, is nothing but a rotation by 2θ in the plane
determined by |s〉 and |ω〉.

6.4.3 Finding 1 out of 4

Let’s suppose, for example, that there are N = 4 items in the database, with
one marked item. With classical queries, the marked item could be found
in the 1st, 2nd, 3rd, or 4th query; on the average 21

2
queries will be needed

before we are successful and four are needed in the worst case.8 But since
sin θ = 1√

N
= 1

2
, we have θ = 30o and 2θ = 60o. After one Grover iteration,

then, we rotate |s〉 to a 90o angle with |ω⊥〉; that is, it lines up with |ω〉.
When we measure by projecting onto the computational basis, we obtain the
result |ω〉 with certainty. Just one quantum query suffices to find the marked
state, a notable improvement over the classical case.

8Of course, if we know there is one marked state, the 4th query is actually superfluous,
so it might be more accurate to say that at most three queries are needed, and 2 1

4
queries

are required on the average.

50 CHAPTER 6. QUANTUM COMPUTATION

There is an alternative way to visualize the Grover iteration that is some-
times useful, as an “inversion about the average.” If we expand a state |ψ〉
in the computational basis

|ψ〉 =
∑

x

ax|x〉, (6.143)

then its inner product with |s〉 = 1√
N

∑

x |x〉 is

〈s|ψ〉 =
1√
N

∑

x

ax =
√
N〈a〉, (6.144)

where

〈a〉 =
1

N

∑

x

ax, (6.145)

is the mean of the amplitude. Then if we apply U s = 2|s〉〈s| − 1 to |ψ〉, we
obtain

U s|ψ〉 =
∑

x

(2〈a〉 − ax)|x〉; (6.146)

the amplitudes are transformed as

U s : ax − 〈a〉 → 〈a〉 − ax, (6.147)

that is the coefficient of |x〉 is inverted about the mean value of the amplitude.
If we consider again the case N = 4, then in the state |s〉 each amplitude

is 1
2
. One query of the oracle flips the sign of the amplitude of marked state,

and so reduces the mean amplitude to 1
4
. Inverting about the mean then

brings the amplitudes of all unmarked states from 1
2

to zero, and raises the
amplitude of the marked state from −1

2
to 1. So we recover our conclusion

that one query suffices to find the marked state with certainty.
We can also easily see that one query is sufficient to find a marked state

if there are N entries in the database, and exactly 1
4

of them are marked.
Then, as above, one query reduces the mean amplitude from 1√

N
to 1

2
√

N
,

and inversion about the mean then reduces the amplitude of each unmarked
state to zero.

(When we make this comparison between the number of times we need
to consult the oracle if the queries can be quantum rather than classical, it

6.4. QUANTUM DATABASE SEARCH 51

may be a bit unfair to say that only one query is needed in the quantum
case. If the oracle is running a routine that computes a function, then some
scratch space will be filled with garbage during the computation. We will
need to erase the garbage by running the computation backwards in order
to maintain quantum coherence. If the classical computation is irreversible
there is no need to run the oracle backwards. In this sense, one query of the
quantum oracle may be roughly equivalent, in terms of complexity, to two
queries of a classical oracle.)

6.4.4 Finding 1 out of N

Let’s return now to the case in which the database contains N items, and
exactly one item is marked. Each Grover iteration rotates the quantum state
in the plane determined by |s〉 and |ω〉; after T iterations, the state is rotated
by θ + 2Tθ from the |ω⊥〉 axis. To optimize the probability of finding the
marked state when we finally perform the measurement, we will iterate until
this angle is close to 90o, or

(2T + 1)θ ' π

2
⇒ 2T + 1 ' π

2θ
, (6.148)

we recall that sin θ = 1√
N

, or

θ ' 1√
N
, (6.149)

for N large; if we choose

T =
π

4

√
N (1 +O(N−1/2)), (6.150)

then the probability of obtaining the measurement result |ω〉 will be

Prob(ω) = sin2 ((2T + 1)θ) = 1 − O
(

1

N

)

. (6.151)

We conclude that only about π
4

√
N queries are needed to determine ω with

high probability, a quadratic speedup relative to the classical result.

52 CHAPTER 6. QUANTUM COMPUTATION

6.4.5 Multiple solutions

If there are r > 1 marked states, and r is known, we can modify the number
of iterations so that the probability of finding one of the marked states is still
very close to 1. The analysis is just as above, except that the oracle induces
a reflection in the hyperplane orthogonal to the vector

|ω̃〉 =
1√
r

(

r
∑

i=1

|ωi〉
)

, (6.152)

the equally weighted superposition of the marked computational basis states
|ωi〉. Now

〈s|ω̃〉 =

√

r

N
≡ sin θ, (6.153)

and a Grover iteration rotates a vector by 2θ in the plane spanned by |s〉
and |ω̃〉; we again conclude that the state is close to |ω̃〉 after a number of
iterations

T ' π

4θ
=
π

4

√

N

r
. (6.154)

If we then measure by projecting onto the computational basis, we will find
one of the marked states (each occurring equiprobably) with probability close
to one. (As the number of solutions increases, the time needed to find one
of them declines like r−1/2, as opposed to r−1 in the classical case.)

Note that if we continue to perform further Grover iterations, the vector
continues to rotate, and so the probability of finding a marked state (when
we finally measure) begins to decline. The Grover algorithm is like baking a
soufflé – if we leave it in the oven for too long, it starts to fall. Therefore, if
we don’t know anything about the number of marked states, we might fail to
find one of them. For example, T ∼ π

4

√
N iterations is optimal for r = 1, but

for r = 4, the probability of finding a marked state after this many iterations
is quite close to zero.

But even if we don’t know r a priori, we can still find a solution with
a quadratic speed up over classical algorithms (for r � N). For example,
we might choose the number of iterations to be random in the range 0 to
π
4

√
N . Then the expected probability of finding a marked state is close to

1/2 for each r, so we are unlikely to fail to find a marked state after several

6.4. QUANTUM DATABASE SEARCH 53

repetitions. And each time we measure, we can submit the state we find to
the oracle as a classical query to confirm whether that state is really marked.

In particular, if we don’t find a solution after several attempts, there
probably is no solution. Hence with high probability we can correctly answer
the yes/no question, “Is there a marked state?” Therefore, we can adopt
the Grover algorithm to solve any NP problem, where the oracle checks
a proposed solution, with a quadratic speedup over a classical exhaustive
search.

6.4.6 Implementing the reflection

To perform a Grover iteration, we need (aside from the oracle query) a unitary
transformation

U s = 2|s〉〈s| − 1 , (6.155)

that reflects a vector about the axis defined by the vector |s〉. How do
we build this transformation efficiently from quantum gates? Since |s〉 =
H(n)|0〉, where H(n) is the bitwise Hadamard transformation, we may write

U s = H(n)(2|0〉〈0| − 1)H(n), (6.156)

so it will suffice to construct a reflection about the axis |0〉. We can easily
build this reflection from an n-bit Toffoli gate θ(n).

Recall that

HσxH = σz; (6.157)

a bit flip in the Hadamard rotated basis is equivalent to a flip of the relative
phase of |0〉 and |1〉. Therefore:

54 CHAPTER 6. QUANTUM COMPUTATION

s

s

s

...

gH H

=

s

s

s

Z

after conjugating the last bit by H , θ(n) becomes controlled(n−1)-σz, which
flips the phase of |11 . . . |1〉 and acts trivially on all other computational
basis states. Conjugating by NOT(n), we obtain U s, aside from an irrelevant
overall minus sign.

You will show in an exercise that the n-bit Toffoli gate θ(n) can be con-
structed from 2n − 5 3-bit Toffoli gates θ(3) (if sufficient scratch space is
available). Therefore, the circuit that constructs U s has a size linear in
n = logN . Grover’s database search (assuming the oracle answers a query
instantaneously) takes a time of order

√
N logN . If we regard the oracle as

a subroutine that performs a function evaluation in polylog time, then the
search takes time of order

√
Npoly(logN).

6.5 The Grover Algorithm Is Optimal

Grover’s quadratic quantum speedup of the database search is already inter-
esting and potentially important, but surely with more cleverness we can do
better, can’t we? No, it turns out that we can’t. Grover’s algorithm provides
the fastest possible quantum search of an unsorted database, if “time” is
measured according to the number of queries of the oracle.

Considering the case of a single marked state |ω〉, let U(ω, T) denote a
quantum circuit that calls the oracle T times. We place no restriction on the
circuit aside from specifying the number of queries; in particular, we place
no limit on the number of quantum gates. This circuit is applied to an initial

6.5. THE GROVER ALGORITHM IS OPTIMAL 55

state |ψ(0)〉, producing a final state

|ψω(t)〉 = U (ω, T)|ψ(0)〉. (6.158)

Now we are to perform a measurement designed to distinguish among the
N possible values of ω. If we are to be able to perfectly distinguish among
the possible values, the states |ψω(t)〉 must all be mutually orthogonal, and
if we are to distinguish correctly with high probability, they must be nearly
orthogonal.

Now, if the states {|ψω〉 are an orthonormal basis, then, for any fixed
normalized vector |ϕ〉,

N−1
∑

ω=0

‖ |ψω〉 − |ϕ〉 ‖2≥ 2N − 2
√
N. (6.159)

(The sum is minimized if |ϕ〉 is the equally weighted superposition of all the
basis elements, |ϕ〉 = 1√

N

∑

ω |ψω〉, as you can show by invoking a Lagrange

multiplier to perform the constrained extremization.) Our strategy will be
to choose the state |ϕ〉 suitably so that we can use this inequality to learn
something about the number T of oracle calls.

Our circuit with T queries builds a unitary transformation

U(ω, T) = UωUT UωUT−1 . . .UωU1, (6.160)

where Uω is the oracle transformation, and the U t’s are arbitrary non-oracle
transformations. For our state |ϕ(T)〉 we will choose the result of applying
U(ω, T) to |ψ(0)〉, except with each Uω replaced by 1 ; that is, the same
circuit, but with all queries submitted to the “empty oracle.” Hence,

|ϕ(T)〉 = UTUT−1 . . .U 2U 1|ψ(0)〉, (6.161)

while

|ψω(T)〉 = UωUT UωUT−1 . . .UωU 1|ψ(0)〉. (6.162)

To compare |ϕ(T)〉 and |ψω(T)〉, we appeal to our previous analysis of the
effect of errors on the accuracy of a circuit, regarding the ω oracle as an
“erroneous” implementation of the empty oracle. The error vector in the
t-th step (cf. eq. (6.63)) is

‖ |E(ω, t)〉 ‖ =‖ (Uω − 1)|ϕ(t)〉 ‖
= 2|〈ω|ϕ(t)〉|, (6.163)

56 CHAPTER 6. QUANTUM COMPUTATION

since Uω = 1 − 2|ω〉〈ω|. After T queries we have (cf. eq. (6.66))

‖ |ψω(T)〉 − |ϕ(T)〉 ‖≤ 2
T
∑

t=1

|〈ω|ϕ(t)〉|. (6.164)

From the identity

(

T
∑

t=1

ct

)2

+
1

2

T
∑

s,t=1

(cs − ct)
2

=
T
∑

s,t=1

(

ctcs +
1

2
c2s − ctcs +

1

2
c2s

)

= T
T
∑

t=1

c2t , (6.165)

we obtain the inequality

(

T
∑

t=1

ct

)2

≤ T
T
∑

t=1

c2t , (6.166)

which applied to eq. (6.164) yields

‖ |ψω(T)〉 − |ϕ(T)〉 ‖2≤ 4T

(

T
∑

t=1

|〈ω|ϕ(t)〉|2
)

. (6.167)

Summing over ω we find

∑

ω

‖ |ψω(T)〉 − |ϕ(T)〉 ‖2≤ 4T
T
∑

t=1

〈ϕ(t)|ϕ(t)〉 = 4T 2.
(6.168)

Invoking eq. (6.159) we conclude that

4T 2 ≥ 2N − 2
√
N, (6.169)

if the states |ψω(T)〉 are mutually orthogonal. We have, therefore, found
that any quantum algorithm that can distinguish all the possible values of
the marked state must query the oracle T times where

T ≥
√

N

2
, (6.170)

(ignoring the small correction as N → ∞). Grover’s algorithm finds ω in
π
4

√
N queries, which exceeds this bound by only about 11%. In fact, it is

6.6. GENERALIZED SEARCH AND STRUCTURED SEARCH 57

possible to refine the argument to improve the bound to T ≥ π
4

√
N(1 − ε),

which is asymptotically saturated by the Grover algorithm.9 Furthermore,
we can show that Grover’s circuit attains the optimal success probability in
T ≤ π

4

√
N queries.

One feels a twinge of disappointment (as well as a surge of admiration
for Grover) at the realization that the database search algorithm cannot be
improved. What are the implications for quantum complexity?

For many optimization problems in the NP class, there is no better
method known than exhaustive search of all the possible solutions. By ex-
ploiting quantum parallelism, we can achieve a quadratic speedup of exhaus-
tive search. Now we have learned that the quadratic speedup is the best
possible if we rely on the power of sheer quantum parallelism, if we don’t de-
sign our quantum algorithm to exploit the specific structure of the problem
we wish to solve. Still, we might do better if we are sufficiently clever.

The optimality of the Grover algorithm might be construed as evidence
that BQP 6⊇ NP . At least, if it turns out that NP ⊆ BQP and P 6= NP ,
then the NP problems must share a deeply hidden structure (for which there
is currently no evidence) that is well-matched to the peculiar capabilities of
quantum circuits.

Even the quadratic speedup may prove useful for a variety ofNP -complete
optimization problems. But a quadratic speedup, unlike an exponential
one, does not really move the frontier between solvability and intractabil-
ity. Quantum computers may someday outperform classical computers in
performing exhaustive search, but only if the clock speed of quantum devices
does not lag too far behind that of their classical counterparts.

6.6 Generalized Search and Structured Search

In the Grover iteration, we perform the transformation U s = 2|s〉〈s| − 1 ,
the reflection in the axis defined by |s〉 = 1√

N

∑N−1
x=0 |x〉. Why this axis? The

advantage of the state |s〉 is that it has the same overlap with each and every
computational basis state. Therefore, the overlap of any marked state |ω〉
with |s〉 is guaranteed to be |〈ω|s〉| = 1/

√
N . Hence, if we know the number

of marked states, we can determine how many iterations are required to find
a marked state with high probability – the number of iterations needed does

9C. Zalka, “Grover’s Quantum Searching Algorithm is Optimal,” quant-ph/9711070.

58 CHAPTER 6. QUANTUM COMPUTATION

not depend on which states are marked.
But of course, we could choose to reflect about a different axis. If we can

build the unitary U (with reasonable efficiency) then we can construct

U (2|0〉〈0| − 1)U † = 2U |0〉〈0|U † − 1 , (6.171)

which reflects in the axis U |0〉.
Suppose that

|〈ω|U |0〉| = sin θ, (6.172)

where |ω〉 is the marked state. Then if we replace U s in the Grover iteration
by the reflection eq. (6.171), one iteration performs a rotation by 2θ in the
plane determined by |ω〉 and U |0〉 (by the same argument we used for U s).
Thus, after T iterations, with (2T + I)θ ∼= π/2, a measurement in the com-
putational basis will find |ω〉 with high probability. Therefore, we can still
search a database if we replace H(n) by U in Grover’s quantum circuit, as
long as U |0〉 is not orthogonal to the marked state.10 But if we have no a
priori information about which state is marked, then H(n) is the best choice,
not only because |s〉 has a known overlap with each marked state, but also
because it has the largest average overlap with all the possible marked states.

But sometimes when we are searching a database, we do have some infor-
mation about where to look, and in that case, the generalized search strategy
described above may prove useful.11

As an example of a problem with some auxiliary structure, suppose that
f(x, y) is a one-bit-valued function of the two n-bit strings x and y, and we
are to find the unique solution to f(x, y) = 1. With Grover’s algorithm,
we can search through the N2 possible values (N = 2n) of (x, y) and find
the solution (x0, y0) with high probability after π

4
N iterations, a quadratic

speedup with respect to classical search.
But further suppose that g(x) is a function of x only, and that it is

known that g(x) = 1 for exactly M values of x, where 1 � M � N . And
furthermore, it is known that g(x0) = 1. Therefore, we can use g to help us
find the solution (x0, y0).

10L.K. Grover “Quantum Computers Can Search Rapidly By Using Almost Any Trans-
formation,” quant-ph/9712011.

11E. Farhi and S. Gutmann, “Quantum-Mechanical Square Root Speedup in a Struc-
tured Search Problem,” quant-ph/9711035; L.K. Grover, “Quantum Search On Structured
Problems,” quant-ph/9802035.

6.7. SOME PROBLEMS ADMIT NO SPEEDUP 59

Now we have two oracles to consult, one that returns the value of f(x, y),
and the other returning the value of g(x). Our task is to find (x0, y0) with a
minimal number of queries.

Classically, we need of order NM queries to find the solution with reason-
able probability. We first evaluate g(x) for each x; then we restrict our search
for a solution to f(x, y) = 1 to only those M values of x such that g(x) = 1.
It is natural to wonder whether there is a way to perform a quantum search
in a time of order the square root of the classical time. Exhaustive search
that queries only the f oracle requires time N �

√
NM , and so does not do

the job. We need to revise our method of quantum search to take advantage
of the structure provided by g.

A better method is to first apply Grover’s algorithm to g(x). In about
π
4

√

N
M

iterations, we prepare a state that is close to the equally weighted

superposition of the M solutions to g(x) = 1. In particular, the state |x0〉
appears with amplitude 1√

M
. Then we apply Grover’s algorithm to f(x, y)

with x fixed. In about π
4

√
N iterations, the state |x0〉|s〉 evolves to a state

quite close to |x0〉|y0〉. Therefore |x0, y0〉 appears with amplitude 1√
M

.

The unitary transformation we have constructed so far, in about π
4

√
N

queries, can be regarded as the transformation U that defines a generalized
search. Furthermore, we know that

〈x0, y0|U |0, 0〉 ∼=
1√
M
. (6.173)

Therefore, if we iterate the generalized search about π
4

√
M times, we will

have prepared a state that is quite close to |x0, y0〉. With altogether about

(

π

4

)2 √
NM, (6.174)

queries, then, we can find the solution with high probability. This is indeed
a quadratic speedup with respect to the classical search.

6.7 Some Problems Admit No Speedup

The example of structured search illustrates that quadratic quantum speedups
over classical algorithms can be attained for a variety of problems, not just
for an exhaustive search of a structureless database. One might even dare

60 CHAPTER 6. QUANTUM COMPUTATION

to hope that quantum parallelism enables us to significantly speedup any
classical algorithm. This hope will now be dashed – for many problems, no
quantum speedup is possible.

We continue to consider problems with a quantum black box, an oracle,
that computes a function f taking n bits to 1. But we will modify our
notation a little. The function f can be represented as a string of N = 2n

bits

X = XN−1XN−2 . . . X1X0, (6.175)

where Xi denotes f(i). Our problem is to evaluate some one-bit-valued
function of X, that is, to answer a yes/no question about the properties
of the oracle. What we will show is that for some functions of X, we can’t
evaluate the function with low error probability using a quantum algorithm,
unless the algorithm queries the oracle as many times (or nearly as many
times) as required with a classical algorithm.12

The key idea is that any Boolean function of the Xi’s can be represented
as a polynomial in the Xi’s. Furthermore, the probability distribution for
a quantum measurement can be expressed as a polynomial in X, where the
degree of the polynomial is 2T , if the measurement follows T queries of the
oracle. The issue, then, is whether a polynomial of degree 2T can provide a
reasonable approximation to the Boolean function of interest.

The action of the oracle can be represented as

UO : |i, y; z〉 → |i, y ⊕Xi; z〉, (6.176)

where i takes values in {0, 1, . . . , N − 1}, y ∈ {0, 1}, and z denotes the state
of auxiliary qubits not acted upon by the oracle. Therefore, in each 2 × 2
block spanned by |i, 0, z〉 and |i, 1, z〉,UO is the 2 × 2 matrix

(

1 −Xi Xi

Xi 1 −Xi

)

. (6.177)

Quantum gates other than oracle queries have no dependence on X. There-
fore after a circuit with T queries acts on any initial state, the resulting state
|ψ〉 has amplitudes that are (at most) T th-degree polynomials in X. If we
perform a POVM on |ψ〉, then the probability 〈ψ|F |ψ〉 of the outcome asso-
ciated with the positive operator F can be expressed as a polynomial in X
of degree at most 2T .

12E. Farhi, et al., quant-ph/9802045; R. Beals, et al., quant-ph/9802049.

6.7. SOME PROBLEMS ADMIT NO SPEEDUP 61

Now any Boolean function of the Xi’s can be expressed (uniquely) as a
polynomial of degree ≤ N in the Xi’s. For example, consider the OR function
of the N Xi’s; it is

OR(X) = 1 − (1 −X0)(1 −X1) · · · (1 −XN−1), (6.178)

a polynomial of degree N .
Suppose that we would like our quantum circuit to evaluate the OR func-

tion with certainty. Then we must be able to perform a measurement with
two outcomes, 0 and 1, where

Prob(0) = 1 −OR(X),

Prob(1) = OR(X). (6.179)

But these expressions are polynomials of degree N , which can arise only if
the circuit queries the oracle at least T times, where

T ≥ N

2
. (6.180)

We conclude that no quantum circuit with fewer than N/2 oracle calls can
compute OR exactly. In fact, for this function (or any function that takes
the value 0 for just one of its N possible arguments), there is a stronger
conclusion (exercise): we require T ≥ N to evaluate OR with certainty.

On the other hand, evaluating the OR function (answering the yes/no
question, “Is there a marked state?”) is just what the Grover algorithm can
achieve in a number of queries of order

√
N . Thus, while the conclusion is

correct that N queries are needed to evaluate OR with certainty, this result is
a bit misleading. We can evaluate OR probabilistically with far fewer queries.
Apparently, the Grover algorithm can construct a polynomial in X that,
though only of degree O(

√
N), provides a very adequate approximation to

the N -th degree polynomial OR(X).
But OR, which takes the value 1 for every value of X except X = ~0,

is a very simple Boolean function. We should consider other functions that
might pose a more serious challenge for the quantum computer.

One that comes to mind is the PARITY function: PARITY(X) takes the
value 0 if the string X contains an even number of 1’s, and the value 1 if
the string contains an odd number of 1’s. Obviously, a classical algorithm
must query the oracle N times to determine the parity. How much better

62 CHAPTER 6. QUANTUM COMPUTATION

can we do by submitting quantum queries? In fact, we can’t do much better
at all – at least N/2 quantum queries are needed to find the correct value of
PARITY(X), with probability of success greater than 1

2
+ δ.

In discussing PARITY it is convenient to use new variables

X̃i = 1 − 2Xi, (6.181)

that take values ±1, so that

PARITY(X̃) =
N−1
∏

i=0

X̃i, (6.182)

also takes values ±1. Now, after we execute a quantum circuit with alto-
gether T queries of the oracle, we are to perform a POVM with two possible
outcomes F even and F odd; the outcome will be our estimate of PARITY(X̃).
As we have already noted, the probability of obtaining the outcome even
(say) can be expressed as a polynomial P (2T)

even of degree (at most) 2T in X̃,

〈F even〉 = P (2T)
even (X̃). (6.183)

How often is our guess correct? Consider the sum

∑

{X̃}
P (2T)

even (X̃) · PARITY(X̃)

=
∑

{X̃}
P (2T)

even (X̃)
N−1
∏

i=0

X̃i. (6.184)

Since each term in the polynomial P (2T)
even (X̃) contains at most 2T of the X̃i’s,

we can invoke the identity

∑

X̃i∈{0,1}
X̃i = 0, (6.185)

to see that the sum in eq. (6.184) must vanish if N > 2T . We conclude that

∑

par(X̃)=1

P (2T)
even (X̃) =

∑

par(X̃)=−1

P (2T)
even (X̃); (6.186)

hence, for T < N/2, we are just as likely to guess “even” when the actual
PARITY(X̃) is odd as when it is even (on average). Our quantum algorithm

6.8. DISTRIBUTED DATABASE SEARCH 63

fails to tell us anything about the value of PARITY(X̃); that is, averaged
over the (a priori equally likely) possible values of Xi, we are just as likely
to be right as wrong.

We can also show, by exhibiting an explicit algorithm (exercise), that
N/2 queries (assuming N even) are sufficient to determine PARITY (either
probabilistically or deterministically.) In a sense, then, we can achieve a
factor of 2 speedup compared to classical queries. But that is the best we
can do.

6.8 Distributed database search

We will find it instructive to view the quantum database search algorithm
from a fresh perspective. We imagine that two parties, Alice and Bob, need
to arrange to meet on a mutually agreeable day. Alice has a calendar that
lists N = 2n days, with each day marked by either a 0, if she is unavailable
that day, or a 1, if she is available. Bob has a similar calendar. Their task is
to find a day when they will both be available.

Alice and Bob both have quantum computers, but they are very far apart
from one another. (Alice is on earth, and Bob has traveled to the Andromeda
galaxy). Therefore, it is very expensive for them to communicate. They
urgently need to arrange their date, but they must economize on the amount
of information that they send back and forth.

Even if there exists a day when both are available, it might not be easy to
find it. If Alice and Bob communicate by sending classical bits back and forth,
then in the worst case they will need to exchange of order N = 2n calendar
entries to have a reasonable chance of successfully arranging their date.. We
will ask: can they do better by exchanging qubits instead?13 (The quantum

13In an earlier version of these notes, I proposed a different scenario, in which Alice and
Bob had nearly identical tables, but with a single mismatched entry; their task was to find
the location of the mismatched bit. However, that example was poorly chosen, because
the task can be accomplished with only logN bits of classical communication. (Thanks
to Richard Cleve for pointing out this blunder.) We want Alice to learn the address (a
binary string of length n) of the one entry where her table differs from Bob’s. So Bob
computes the parity of the N/2 entries in his table with a label that takes the value 0 in
its least significant bit, and he sends that one parity bit to Alice. Alice compares to the
parity of the same entries in her table, and she infers one bit (the least significant bit) of
the address of the mismatched entry. Then they do the same for each of the remaining
n − 1 bits, until Alice knows the complete address of the “error”. Altogether just n bits

64 CHAPTER 6. QUANTUM COMPUTATION

information highway from earth to Andromeda was carefully designed and
constructed, so it does not cost much more to send qubits instead of bits.)

To someone familiar with the basics of quantum information theory, this
sounds like a foolish question. Holevo’s theorem told us once and for all that
a single qubit can convey no more than one bit of classical information. On
further reflection, though, we see that Holevo’s theorem does not really settle
the issue. While it bounds the mutual information of a state preparation with
a measurement outcome, it does not assure us (at least not directly) that
Alice and Bob need to exchange as many qubits as bits to compare their
calendars. Even so, it comes as a refreshing surprise14 to learn that Alice
and Bob can do the job by exchanging O(

√
N logN) qubits, as compared to

O(N) classical bits.
To achieve this Alice and Bob must work in concert, implementing a

distributed version of the database search. Alice has access to an oracle
(her calendar) that computes a function fA(x), and Bob has an oracle (his
calendar) that computes fB(x). Together, they can query the oracle

fAB(x) = fA(x) ∧ fB(x) . (6.187)

Either one of them can implement the reflection U s, so they can perform a
complete Grover iteration, and can carry out exhaustive search for a suitable
day x such that fAB(x) = 1 (when Alice and Bob are both available). If a
mutually agreeable day really exists, they will succeed in finding it after of
order

√
N queries.

How do Alice and Bob query fAB? We’ll describe how they do it acting
on any one of the computational basis states |x〉. First Alice performs

|x〉|0〉 → |x〉|fA(x)〉, (6.188)

and then she sends the n+ 1 qubits to Bob. Bob performs

|x〉|fA(x)〉 → (−1)fA(x)∧fB(x)|x〉|fA(x)〉. (6.189)

This transformation is evidently unitary, and you can easily verify that Bob
can implement it by querying his oracle. Now the phase multiplying |x〉 is
(−1)fAB(x) as desired, but |fA(x)〉 remains stored in the other register, which

are sent (and all from Bob to Alice).
14H. Burhman, et al., “Quantum vs. Classical Communication and Computation,”

quant-ph/9802040.

6.8. DISTRIBUTED DATABASE SEARCH 65

would spoil the coherence of a superposition of x values. Bob cannot erase
that register, but Alice can. So Bob sends the n + 1 qubits back to Alice,
and she consults her oracle once more to perform

(−1)fA(x)∧fB(x)|x〉|fA(x)〉 → (−1)fA(x)∧fB(x)|x〉|0〉.
(6.190)

By exchanging 2(n+ 1) qubits, the have accomplished one query of the fAB

oracle, and so can execute one Grover iteration.

Suppose, for example, that Alice and Bob know that there is only one
mutually agreeable date, but they have no a priori information about which
date it is. After about π

4

√
N iterations, requiring altogether

Q ∼= π

4

√
N · 2(logN + 1), (6.191)

qubit exchanges, Alice measures, obtaining the good date with probability
quite close to 1.

Thus, at least in this special context, exchanging O(
√
N logN) qubits

is as good as exchanging O(N) classical bits. Apparently, we have to be
cautious in interpreting the Holevo bound, which ostensibly tells us that a
qubit has no more information-carrying capacity than a bit!

If Alice and Bob don’t know in advance how many good dates there are,
they can still perform the Grover search (as we noted in §6.4.5), and will
find a solution with reasonable probability. With 2 · logN bits of classical
communication, they can verify whether the date that they found is really
mutually agreeable.

6.8.1 Quantum communication complexity

More generally, we may imagine that several parties each possess an n-bit
input, and they are to evaluate a function of all the inputs, with one party
eventually learning the value of the function. What is the minimum amount
of communication needed to compute the function (either deterministically
or probabilistically)? The well-studied branch of classical complexity theory
that addresses this question is called communication complexity. What we
established above is a quadratic separation between quantum and classical
communication complexity, for a particular class of two-party functions.

66 CHAPTER 6. QUANTUM COMPUTATION

Aside from replacing the exchange of classical bits by the exchange of
qubits, there are other interesting ways to generalize classical communica-
tion complexity. One is to suppose that the parties share some preexisting
entangled state (either Bell pairs or multipartite entanglement), and that
they may exploit that entanglement along with classical communication to
perform the function evaluation. Again, it is not immediately clear that the
shared entanglement will make things any easier, since entanglement alone
doesn’t permit the parties to exchange classical messages. But it turns out
that the entanglement does help, at least a little bit.15

The analysis of communication complexity is a popular past time among
complexity theorists, but this discipline does not yet seem to have assumed
a prominent position in practical communications engineering. Perhaps this
is surprising, considering the importance of efficiently distributing the com-
putational load in parallelized computing, which has become commonplace.
Furthermore, it seems that nearly all communication in real life can be re-
garded as a form of remote computation. I don’t really need to receive all the
bits that reach me over the telephone line, especially since I will probably re-
tain only a few bits of information pertaining to the call tomorrow (the movie
we decided to go to). As a less prosaic example, we on earth may need to
communicate with a robot in deep space, to instruct it whether to enter and
orbit around a distant star system. Since bandwidth is extremely limited, we
would like it to compute the correct answer to the Yes/No question “Enter
orbit?” with minimal exchange of information between earth and robot.

Perhaps a future civilization will exploit the known quadratic separation
between classical and quantum communication complexity, by exchanging
qubits rather than bits with its flotilla of spacecraft. And perhaps an expo-
nential separation will be found, at least in certain contexts, which would
significantly boost the incentive to develop the required quantum communi-
cations technology.

6.9 Periodicity

So far, the one case for which we have found an exponential separation be-
tween the speed of a quantum algorithm and the speed of the corresponding

15R. Cleve, et al., “Quantum Entanglement and the Communication Complexity of the
Inner Product Function,” quant-ph/9708019; W. van Dam, et al., “Multiparty Quantum
Communication Complexity,” quant-ph/9710054.

6.9. PERIODICITY 67

classical algorithm is the case of Simon’s problem. Simon’s algorithm exploits
quantum parallelism to speed up the search for the period of a function. Its
success encourages us to seek other quantum algorithms designed for other
kinds of period finding.

Simon studied periodic functions taking values in (Z2)
n. For that purpose

the n-bit Hadamard transform H(n) was a powerful tool. If we wish instead to
study periodic functions taking values in Z2n , the (discrete) Fourier transform
will be a tool of comparable power.

The moral of Simon’s problem is that, while finding needles in a haystack
may be difficult, finding periodically spaced needles in a haystack can be far
easier. For example, if we scatter a photon off of a periodic array of needles,
the photon is likely to be scattered in one of a set of preferred directions,
where the Bragg scattering condition is satisfied. These preferred directions
depend on the spacing between the needles, so by scattering just one photon,
we can already collect some useful information about the spacing. We should
further explore the implications of this metaphor for the construction of
efficient quantum algorithms.

So imagine a quantum oracle that computes a function

f : {0, 1}n → {0, 1}m, (6.192)

that has an unknown period r, where r is a positive integer satisfying

1 � r � 2n. (6.193)

That is,

f(x) = f(x+mr), (6.194)

where m is any integer such that x and x + mr lie in {0, 1, 2, . . . , 2n − 1}.
We are to find the period r. Classically, this problem is hard. If r is, say,
of order 2n/2, we will need to query the oracle of order 2n/4 times before we
are likely to find two values of x that are mapped to the same value of f(x),
and hence learn something about r. But we will see that there is a quantum
algorithm that finds r in time poly (n).

Even if we know how to compute efficiently the function f(x), it may
be a hard problem to determine its period. Our quantum algorithm can
be applied to finding, in poly(n) time, the period of any function that we
can compute in poly(n) time. Efficient period finding allows us to efficiently

68 CHAPTER 6. QUANTUM COMPUTATION

solve a variety of (apparently) hard problems, such as factoring an integer,
or evaluating a discrete logarithm.

The key idea underlying quantum period finding is that the Fourier trans-
form can be evaluated by an efficient quantum circuit (as discovered by Peter
Shor). The quantum Fourier transform (QFT) exploits the power of quantum
parallelism to achieve an exponential speedup of the well-known (classical)
fast Fourier transform (FFT). Since the FFT has such a wide variety of
applications, perhaps the QFT will also come into widespread use someday.

6.9.1 Finding the period

The QFT is the unitary transformation that acts on the computational basis
according to

QFT : |x〉 → 1√
N

N−1
∑

y=0

e2πixy/N |y〉, (6.195)

whereN = 2n. For now let’s suppose that we can perform the QFT efficiently,
and see how it enables us to extract the period of f(x).

Emulating Simon’s algorithm, we first query the oracle with the input
1√
N

∑

x |x〉 (easily prepared by applying H(n) to |0〉), and so prepare the
state

1√
N

N−1
∑

x=0

|x〉|f(x)〉. (6.196)

Then we measure the output register, obtaining the result |f(x0)〉 for some
0 ≤ x0 < r. This measurement prepares in the input register the coherent
superposition of the A values of x that are mapped to f(x0):

1√
A

A−1
∑

j=0

|x0 + jr〉, (6.197)

where

N − r ≤ x0 + (A− 1)r < N, (6.198)

or

A− 1 <
N

r
< A + 1. (6.199)

6.9. PERIODICITY 69

Actually, the measurement of the output register is unnecessary. If it is omit-
ted, the state of the input register is an incoherent superposition (summed
over x0 ∈ {0, 1, . . . r − 1}) of states of the form eq. (6.197). The rest of the
algorithm works just as well acting on this initial state.

Now our task is to extract the value of r from the state eq. (6.197) that we
have prepared. Were we to measure the input register by projecting onto the
computational basis at this point, we would learn nothing about r. Instead
(cf. Simon’s algorithm), we should Fourier transform first and then measure.

By applying the QFT to the state eq. (6.197) we obtain

1√
NA

N−1
∑

y=0

e2πix0y
A−1
∑

j=0

e2πijry/N |y〉. (6.200)

If we now measure in the computational basis, the probability of obtaining
the outcome y is

Prob(y) =
A

N

∣

∣

∣

∣

∣

∣

1

A

A−1
∑

j=0

e2πijry/N

∣

∣

∣

∣

∣

∣

2

. (6.201)

This distribution strongly favors values of y such that yr/N is close to an
integer. For example, if N/r happened to be an integer (and therefore equal
to A), we would have

Prob(y) =
1

r

∣

∣

∣

∣

∣

∣

1

A

A−1
∑

j=0

e2πijy/A

∣

∣

∣

∣

∣

∣

=

1
r

y = A · (integer)

0 otherwise. (6.202)

More generally, we may sum the geometric series

A−1
∑

j=0

eiθj =
eiAθ − 1

eiθ − 1
, (6.203)

where

θy =
2πyr(mod N)

N
. (6.204)

There are precisely r values of y in {0, 1, . . . , N − 1} that satisfy

− r

2
≤ yr(mod N) ≤ r

2
. (6.205)

70 CHAPTER 6. QUANTUM COMPUTATION

(To see this, imagine marking the multiples of r and N on a number line
ranging from 0 to rN − 1. For each multiple of N , there is a multiple of r no
more than distance r/2 away.) For each of these values, the corresponding
θy satisfies.

−π r
N

≤ θy ≤ π
r

N
. (6.206)

Now, since A − 1 < N
r
, for these values of θy all of the terms in the sum

over j in eq. (6.203) lie in the same half-plane, so that the terms interfere
constructively and the sum is substantial.

We know that

|1 − eiθ| ≤ |θ|, (6.207)

because the straight-line distance from the origin is less than the arc length
along the circle, and for A|θ| ≤ π, we know that

|1 − eiAθ| ≥ 2A|θ|
π

, (6.208)

because we can see (either graphically or by evaluating its derivative) that
this distance is a convex function. We actually have A < N

r
+ 1, and hence

Aθy < π
(

1 + r
N

)

, but by applying the above bound to

∣

∣

∣

∣

∣

ei(A−1)θ − 1

eiθ − 1
+ ei(A−1)θ

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

ei(A−1)θ − 1

eiθ − 1

∣

∣

∣

∣

∣

− 1, (6.209)

we can still conclude that
∣

∣

∣

∣

∣

eiAθ − 1

eiθ − 1

∣

∣

∣

∣

∣

≥ 2(A− 1)|θ|
π|θ| − 1 =

2

π
A−

(

1 +
2

π

)

. (6.210)

Ignoring a possible correction of order 2/A, then, we find

Prob(y) ≥
(

4

π2

)

1

r
, (6.211)

for each of the r values of y that satisfy eq. (6.205). Therefore, with a
probability of at least 4/π2, the measured value of y will satisfy

k
N

r
− 1

2
≤ y ≤ k

N

r
+

1

2
, (6.212)

6.9. PERIODICITY 71

or

k

r
− 1

2N
≤ y

N
≤ k

r
+

1

2N
, (6.213)

where k is an integer chosen from {0, 1, . . . , r − 1}. The output of the com-
putation is reasonable likely to be within distance 1/2 of an integer multiple
of N/r.

Suppose that we know that r < M � N . Thus N/r is a rational number
with a denominator less than M . Two distinct rational numbers, each with
denominator less than M , can be no closer together than 1/M2, since a

b
−

c
d

= ad−bc
bd

. If the measurement outcome y satisfies eq. (6.212), then there
is a unique value of k/r (with r < M) determined by y/N , provided that
N ≥ M2. This value of k/r can be efficiently extracted from the measured
y/N , by the continued fraction method.

Now, with probability exceeding 4/π2, we have found a value of k/r where
k is selected (roughly equiprobably) from {0, 1, 2, . . . , r−1}. It is reasonably
likely that k and r are relatively prime (have no common factor), so that we
have succeeded in finding r. With a query of the oracle, we may check
whether f(x) = f(x+ r). But if GCD(k, r) 6= 1, we have found only a factor
(r1) of r.

If we did not succeed, we could test some nearby values of y (the measured
value might have been close to the range −r/2 ≤ yr(mod N) ≤ r/2 without
actually lying inside), or we could try a few multiples of r (the value of
GCD(k, r), if not 1, is probably not large). That failing, we resort to a
repetition of the quantum circuit, this time (with probability at least 4/π2)
obtaining a value k′/r. Now k′, too, may have a common factor with r,
in which case our procedure again determines a factor (r2) of r. But it
is reasonably likely that GCD(k, k′) = 1, in which case r = LCM, (r1, r2).
Indeed, we can estimate the probability that randomly selected k and k′ are
relatively prime as follows: Since a prime number p divides a fraction 1/p of
all numbers, the probability that p divides both k and k′ is 1/p2. And k and
k′ are coprime if and only if there is no prime p that divides both. Therefore,

Prob(k, k′ coprime) =
∏

prime p

(

1 − 1

p2

)

=
1

ζ(2)
=

6

π2
' .607

(6.214)

(where ζ(z) denotes the Riemann zeta function). Therefore, we are likely to
succeed in finding the period r after some constant number (independent of
N) of repetitions of the algorithm.

72 CHAPTER 6. QUANTUM COMPUTATION

6.9.2 From FFT to QFT

Now let’s consider the implementation of the quantum Fourier transform.
The Fourier transform

∑

x

f(x)|x〉 →
∑

y

(

1√
N

∑

x

e2πixy/Nf(x)

)

|y〉, (6.215)

is multiplication by an N×N unitary matrix, where the (x, y) matrix element
is (e2πi/N)xy. Naively, this transform requires O(N2) elementary operations.
But there is a well-known and very useful (classical) procedure that reduces
the number of operations to O(N logN). Assuming N = 2n, we express x
and y as binary expansions

x = xn−1 · 2n−1 + xn−2 · 2n−2 + . . . + x1 · 2 + x0

y = yn−1 · 2n−1 + yn−2 · 2n−2 + . . .+ y1 · 2 + y0. (6.216)

In the product of x and y, we may discard any terms containing n or more
powers of 2, as these make no contribution to e2πixy/2n. Hence

xy

2n
≡ yn−1(.x0) + yn−2(.x1x0) + yn−3(.x2x1x0) + . . .

+ y1(.xn−2xn−3 . . . x0) + y0(.xn−1xn−2 . . . x0), (6.217)

where the factors in parentheses are binary expansions; e.g.,

.x2x1x0 =
x2

2
+
x1

22
+
x0

23
. (6.218)

We can now evaluate

f̃ (x) =
1√
N

∑

y

e2πixy/Nf(y), (6.219)

for each of the N values of x. But the sum over y factors into n sums over
yk = 0, 1, which can be done sequentially in a time of order n.

With quantum parallelism, we can do far better. From eq. (6.217) we
obtain

QFT :|x〉 → 1√
N

∑

y

e2πixy/N |y〉

=
1√
2n

(

|0〉 + e2πi(.x0)|1〉
) (

|0〉 + e2πi(.x1x0)|1〉
)

. . .
(

|0〉 + e2πi(.xn−1xn−2...x0)|1〉
)

. (6.220)

6.9. PERIODICITY 73

The QFT takes each computational basis state to an unentangled state of
n qubits; thus we anticipate that it can be efficiently implemented. Indeed,
let’s consider the case n = 3. We can readily see that the circuit

|x2〉

|x1〉

|x0〉

|y2〉

|y1〉

|y0〉

s

s s

H R1 R2

H R1

H

does the job (but note that the order of the bits has been reversed in the
output). Each Hadamard gate acts as

H : |xk〉 →
1√
2

(

|0〉 + e2πi(.xk)|1〉
)

. (6.221)

The other contributions to the relative phase of |0〉 and |1〉 in the kth qubit
are provided by the two-qubit conditional rotations, where

Rd =

(

1 0

0 eiπ/2d

)

, (6.222)

and d = (k − j) is the “distance” between the qubits.
In the case n = 3, the QFT is constructed from three H gates and three

controlled-R gates. For general n, the obvious generalization of this circuit
requires n H gates and

(

n
2

)

= 1
2
n(n − 1) controlled R’s. A two qubit gate

is applied to each pair of qubits, again with controlled relative phase π/2d,
where d is the “distance” between the qubits. Thus the circuit family that
implements QFT has a size of order (logN)2.

We can reduce the circuit complexity to linear in logN if we are will-
ing to settle for an implementation of fixed accuracy, because the two-qubit
gates acting on distantly separated qubits contribute only exponentially small
phases. If we drop the gates acting on pairs with distance greater than m,
than each term in eq. (6.217) is replaced by an approximation to m bits of
accuracy; the total error in xy/2n is certainly no worse than n2−m, so we
can achieve accuracy ε in xy/2n with m ≥ logn/ε. If we retain only the
gates acting on qubit pairs with distance m or less, then the circuit size is
mn ∼ n logn/ε.

74 CHAPTER 6. QUANTUM COMPUTATION

In fact, if we are going to measure in the computational basis immedi-
ately after implementing the QFT (or its inverse), a further simplification
is possible – no two-qubit gates are needed at all! We first remark that the
controlled – Rd gate acts symmetrically on the two qubits – it acts trivially
on |00〉, |01〉, and |10〉, and modifies the phase of |11〉 by eiθd. Thus, we
can interchange the “control” and “target” bits without modifying the gate.
With this change, our circuit for the 3-qubit QFT can be redrawn as:

|x2〉

|x1〉

|x0〉

|y2〉

|y1〉

|y0〉

s s

s

H

R1 H

R2 R1 H

Once we have measured |y0〉, we know the value of the control bit in the
controlled-R1 gate that acted on the first two qubits. Therefore, we will
obtain the same probability distribution of measurement outcomes if, instead
of applying controlled-R1 and then measuring, we instead measure y0 first,
and then apply (R1)

y0 to the next qubit, conditioned on the outcome of the
measurement of the first qubit. Similarly, we can replace the controlled-R1

and controlled-R2 gates acting on the third qubit by the single qubit rotation

(R2)
y0(R1)

y1 , (6.223)

(that is, a rotation with relative phase π(.y1y0)) after the values of y1 and y0

have been measured.
Altogether then, if we are going to measure after performing the QFT,

only n Hadamard gates and n − 1 single-qubit rotations are needed to im-
plement it. The QFT is remarkably simple!

6.10 Factoring

6.10.1 Factoring as period finding

What does the factoring problem (finding the prime factors of a large com-
posite positive integer) have to do with periodicity? There is a well-known

6.10. FACTORING 75

(randomized) reduction of factoring to determining the period of a function.
Although this reduction is not directly related to quantum computing, we
will discuss it here for completeness, and because the prospect of using a
quantum computer as a factoring engine has generated so much excitement.

Suppose we want to find a factor of the n-bit number N . Select pseudo-
randomly a < N , and compute the greatest common divisor GCD(a,N),
which can be done efficiently (in a time of order (logN)3) using the Euclidean
algorithm. If GCD(a,N) 6= 1 then the GCD is a nontrivial factor of N , and
we are done. So suppose GCD(a,N) = 1.

[Aside: The Euclidean algorithm. To compute GCD(N1, N2) (for N1 >
N2) first divide N1 by N2 obtaining remainder R1. Then divide N2 by
R1, obtaining remainder R2. Divide R1 by R2, etc. until the remainder
is 0. The last nonzero remainder is R = GCD(N1, N2). To see that the
algorithm works, just note that (1) R divides all previous remainders
and hence also N1 and N2, and (2) any number that divides N1 and
N2 will also divide all remainders, including R. A number that divides
both N1 and N2, and also is divided by any number that divides both
N1 and N2 must be GCD(N1, N2). To see how long the Euclidean
algorithm takes, note that

Rj = qRj+1 +Rj+2, (6.224)

where q ≥ 1 and Rj+2 < Rj+1; therefore Rj+2 <
1
2
Rj. Two divisions

reduce the remainder by at least a factor of 2, so no more than 2 logN1

divisions are required, with each division using O((logN)2) elementary
operations; the total number of operations is O((logN)3).]

The numbers a < N coprime to N (having no common factor with N)
form a finite group under multiplication modN . [Why? We need to establish
that each element a has an inverse. But for given a < N coprime to N , each
ab (mod N) is distinct, as b ranges over all b < N coprime to N .16 Therefore,
for some b, we must have ab ≡ 1 (mod N); hence the inverse of a exists.]
Each element a of this finite group has a finite order r, the smallest positive
integer such that

ar ≡ 1 (mod N). (6.225)

16If N divides ab − ab′, it must divide b − b′.

76 CHAPTER 6. QUANTUM COMPUTATION

The order of a mod N is the period of the function

fN,a(x) = ax (mod N). (6.226)

We know there is an efficient quantum algorithm that can find the period of
a function; therefore, if we can compute fN,a efficiently, we can find the order
of a efficiently.

Computing fN,a may look difficult at first, since the exponent x can be
very large. But if x < 2m and we express x as a binary expansion

x = xm−1 · 2m−1 + xm−2 · 2m−2 + . . . + x0, (6.227)

we have

ax(mod N) = (a2m−1

)xm−1(a2m−2

)xm−2 . . . (a)x0 (mod N).
(6.228)

Each a2j

has a large exponent, but can be computed efficiently by a classical
computer, using repeated squaring

a2j

(mod N) = (a2j−1

)2 (mod N). (6.229)

So only m − 1 (classical) mod N multiplications are needed to assemble a
table of all a2j

’s.
The computation of ax(mod N) is carried out by executing a routine:

INPUT 1

For j = 0 to m− 1, if xj = 1, MULTIPLY a2j

.

This routine requires at most m mod N multiplications, each requiring of
order (logN)2 elementary operations.17 Since r < N , we will have a rea-
sonable chance of success at extracting the period if we choose m ∼ 2 logN .
Hence, the computation of fN,a can be carried out by a circuit family of size
O((logN)3). Schematically, the circuit has the structure:

17Using tricks for performing efficient multiplication of very large numbers, the number
of elementary operations can be reduced to O(log N log log N log log logN); thus, asymp-
totically for large N , a circuit family with size O(log2 N log logN log log log N) can com-
pute fN,a.

6.10. FACTORING 77

|x2〉
|x1〉
|x0〉
|1〉

s

s

s

a a2 a4

Multiplication by a2j

is performed if the control qubit xj has the value 1.
Suppose we have found the period r of a mod N . Then if r is even, we

have

N divides
(

a
r
2 + 1

) (

a
r
2 − 1

)

. (6.230)

We know that N does not divide ar/2 − 1; if it did, the order of a would be
≤ r/2. Thus, if it is also the case that N does not divide ar/2 + 1, or

ar/2 6= −1 (mod N), (6.231)

thenN must have a nontrivial common factor with each of ar/2±1. Therefore,
GCD(N, ar/2 + 1) 6= 1 is a factor (that we can find efficiently by a classical
computation), and we are done.

We see that, once we have found r, we succeed in factoring N unless
either (1) r is odd or (2) r is even and ar/2 ≡ −1 (mod N). How likely is
success?

Let’s suppose that N is a product of two prime factors p1 6= p2,

N = p1p2 (6.232)

(this is actually the least favorable case). For each a < p1p2, there exist
unique a1 < p1 and a2 < p2 such that

a ≡ a1 (mod p1)

a ≡ a2 (mod p2). (6.233)

Choosing a random a < N is, therefore, equivalent to choosing random
a,< p1 and a2 < p2.

[Aside: We’re using the Chinese Remainder Theorem. The a solving
eq. (6.233) is unique because if a and b are both solutions, then both

78 CHAPTER 6. QUANTUM COMPUTATION

p1 and p2 must divide a− b. The solution exists because every a < p1p2

solves eq. (6.233) for some a1 and a2. Since there are exactly p1p2 ways
to choose a1 and a2, and exactly p1p2 ways to choose a, uniqueness
implies that there is an a corresponding to each pair a1, a2.]

Now let r1 denote the order of a1 mod p1 and r2 denote the order of
a2 mod p2. The Chinese remainder theorem tells us that ar ≡ 1 (mod p1p2)
is equivalent to

ar
1 ≡ 1 (mod p1)

ar
2 ≡ 1 (mod p2). (6.234)

Therefore r = LCM(r1, r2). If r1 and r2 are both odd, then so is r, and we
lose.

But if either r1 or r2 is even, then so is r, and we are still in the game. If

ar/2 ≡ −1 (mod p1)

ar/2 ≡ −1 (mod p2). (6.235)

Then we have ar/2 ≡ −1 (mod p1p2) and we still lose. But if either

ar/2 ≡ −1 (mod p1)

ar/2 ≡ 1 (mod p2), (6.236)

or

ar/2 ≡ 1 (mod p1)

ar/2 ≡ −1 (mod p2), (6.237)

then ar/2 6≡ −1(mod p1p2) and we win. (Of course, ar/2 ≡ 1 (mod p1) and
ar/2 ≡ 1 (mod p2) is not possible, for that would imply ar/2 ≡ 1 (mod p1p2),
and r could not be the order of a.)

Suppose that

r1 = 2c1 · odd

r2 = 2c2 · odd, (6.238)

where c1 > c2. Then r = LCM(r1, r2) = 2r2· integer, so that ar/2 ≡
1 (mod p2) and eq. (6.236) is satisfied – we win! Similarly c2 > c1 im-
plies eq. (6.237) – again we win. But for c1 = c2, r = r1 · (odd) = r2 · (odd′)
so that eq. (6.235) is satisfied – in that case we lose.

6.10. FACTORING 79

Okay – it comes down to: for c1 = c2 we lose, for c1 6= c2 we win. How
likely is c1 6= c2?

It helps to know that the multiplicative group mod p is cyclic – it contains
a primitive element of order p − 1, so that all elements are powers of the
primitive element. [Why? The integers mod p are a finite field. If the group
were not cyclic, the maximum order of the elements would be q < p− 1, so
that xq ≡ 1 (mod p) would have p − 1 solutions. But that can’t be: in a
finite field there are no more than q qth roots of unity.]

Suppose that p − 1 = 2k · s, where s is odd, and consider the orders of
all the elements of the cyclic group of order p− 1. For brevity, we’ll discuss
only the case k = 1, which is the least favorable case for us. Then if b is a
primitive (order 2s) element, the even powers of b have odd order, and the
odd powers of b have order 2· (odd). In this case, then, r = 2c· (odd) where
c ∈ {0, 1}, each occuring equiprobably. Therefore, if p1 and p2 are both of
this (unfavorable) type, and a1, a2 are chosen randomly, the probability that
c1 6= c2 is 1

2
. Hence, once we have found r, our probability of successfully

finding a factor is at least 1
2
, if N is a product of two distinct primes. If N has

more than two distinct prime factors, our odds are even better. The method
fails if N is a prime power, N = pα, but prime powers can be efficiently
factored by other methods.

6.10.2 RSA

Does anyone care whether factoring is easy or hard? Well, yes, some people
do.

The presumed difficulty of factoring is the basis of the security of the
widely used RSA18 scheme for public key cryptography, which you may have
used yourself if you have ever sent your credit card number over the internet.

The idea behind public key cryptography is to avoid the need to exchange
a secret key (which might be intercepted and copied) between the parties
that want to communicate. The enciphering key is public knowledge. But
using the enciphering key to infer the deciphering key involves a prohibitively
difficult computation. Therefore, Bob can send the enciphering key to Alice
and everyone else, but only Bob will be able to decode the message that Alice
(or anyone else) encodes using the key. Encoding is a “one-way function”
that is easy to compute but very hard to invert.

18For Rivest, Shamir, and Adleman

80 CHAPTER 6. QUANTUM COMPUTATION

(Of course, Alice and Bob could have avoided the need to exchange the
public key if they had decided on a private key in their previous clandestine
meeting. For example, they could have agreed to use a long random string
as a one-time pad for encoding and decoding. But perhaps Alice and Bob
never anticipated that they would someday need to communicate privately.
Or perhaps they did agree in advance to use a one-time pad, but they have
now used up their private key, and they are loath to reuse it for fear that an
eavesdropper might then be able to break their code. Now they are two far
apart to safely exchange a new private key; public key cryptography appears
to be their most secure option.)

To construct the public key Bob chooses two large prime numbers p and
q. But he does not publicly reveal their values. Instead he computes the
product

N = pq. (6.239)

Since Bob knows the prime factorization of N , he also knows the value of the
Euler function ϕ(N) – the number of number less than N that are coprime
with N . In the case of a product of two primes it is

ϕ(N) = N − p− q + 1 = (p− 1)(q − 1), (6.240)

(only multiples of p and q share a factor with N). It is easy to find ϕ(N) if
you know the prime factorization of N , but it is hard if you know only N .

Bob then pseudo-randomly selects e < ϕ(N) that is coprime with ϕ(N).
He reveals to Alice (and anyone else who is listening) the value of N and e,
but nothing else.

Alice converts her message to ASCII, a number a < N . She encodes the
message by computing

b = f(a) = ae(mod N), (6.241)

which she can do quickly by repeated squaring. How does Bob decode the
message?

Suppose that a is coprime to N (which is overwhelmingly likely if p and
q are very large – anyway Alice can check before she encodes). Then

aϕ(N) ≡ 1 (mod N) (6.242)

(Euler’s theorem). This is so because the numbers less than N and coprime
to N form a group (of order ϕ(N)) under mod N multiplication. The order of

6.10. FACTORING 81

any group element must divide the order of the group (the powers of a form
a subgroup). Since GCD(e, ϕ(N) = 1, we know that e has a multiplicative
inverse d = e−1 mod ϕ(N):

ed ≡ 1 (mod ϕ(N)). (6.243)

The value of d is Bob’s closely guarded secret; he uses it to decode by com-
puting:

f−1(b) = bd (mod N)

= aed (mod N)

= a · (aϕ(N))integer (mod N)

= a (mod N). (6.244)

[Aside: How does Bob compute d = e−1? The multiplicative inverse is a
byproduct of carrying out the Euclidean algorithm to compute GCD(e, ϕ(N)) =
1. Tracing the chain of remainders from the bottom up, starting with
Rn = 1:

1 = Rn = Rn−2 − qn−1Rn−1

Rn−1 = Rn−3 − qn−2Rn−2

Rn−2 = Rn−4 − qn−3Rn−3

etc. . . . (6.245)

(where the qj’s are the quotients), so that

1 = (1 + qn−1qn−2)Rn−2 − qn−1Rn−3

1 = (−qn−1 − qn−3(1 + qn−1qn−2))Rn−3

+ (1 + qn−1qn−2)Rn−4,

etc. (6.246)

Continuing, we can express 1 as a linear combination of any two suc-
cessive remainders; eventually we work our way up to

1 = d · e+ q · ϕ(N), (6.247)

and identify d as e−1 (mod ϕ(N)).]

82 CHAPTER 6. QUANTUM COMPUTATION

Of course, if Eve has a superfast factoring engine, the RSA scheme is
insecure. She factors N , finds ϕ(N), and quickly computes d. In fact, she
does not really need to factor N ; it is sufficient to compute the order modulo
N of the encoded message ae (mod N). Since e is coprime with ϕ(N), the
order of ae (mod N) is the same as the order of a (both elements generate
the same orbit, or cyclic subgroup). Once the order Ord(a) is known, Eve
computes d̃ such that

d̃e ≡ 1 (mod Ord(a)) (6.248)

so that

(ae)d̃ ≡ a · (aOrd(a))integer (mod N) ≡ a (mod N),
(6.249)

and Eve can decipher the message. If our only concern is to defeat RSA,
we run the Shor algorithm to find r = Ord(ae), and we needn’t worry about
whether we can use r to extract a factor of N or not.

How important are such prospective cryptographic applications of quan-
tum computing? When fast quantum computers are readily available, con-
cerned parties can stop using RSA, or can use longer keys to stay a step
ahead of contemporary technology. However, people with secrets sometimes
want their messages to remain confidential for a while (30 years?). They may
not be satisfied by longer keys if they are not confident about the pace of
future technological advances.

And if they shun RSA, what will they use instead? Not so many suitable
one-way functions are known, and others besides RSA are (or may be) vul-
nerable to a quantum attack. So there really is a lot at stake. If fast large
scale quantum computers become available, the cryptographic implications
may be far reaching.

But while quantum theory taketh away, quantum theory also giveth;
quantum computers may compromise public key schemes, but also offer an
alternative: secure quantum key distribution, as discussed in Chapter 4.

6.11 Phase Estimation

There is an alternative way to view the factoring algorithm (due to Kitaev)
that deepens our insight into how it works: we can factor because we can

6.11. PHASE ESTIMATION 83

measure efficiently and accurately the eigenvalue of a certain unitary opera-
tor.

Consider a < N coprime to N , let x take values in {0, 1, 2, . . . , N − 1},
and let Ua denote the unitary operator

Ua : |x〉 → |ax (mod N)〉. (6.250)

This operator is unitary (a permutation of the computational basis) because
multiplication by a mod N is invertible.

If the order of a mod N is r, then

U r
a = 1 . (6.251)

It follows that all eigenvalues of Ua are rth roots of unity:

λk = e2πik/r, k ∈ {0, 1, 2, . . . , r − 1}. (6.252)

The corresponding eigenstates are

|λk〉 =
1√
r

r−1
∑

j=0

e−2πikj/r|ajx0(mod N)〉; (6.253)

associated with each orbit of length r generated by multiplication by a, there
are r mutually orthogonal eigenstates.

Ua is not hermitian, but its phase (the Hermitian operator that generates
Ua) is an observable quantity. Suppose that we can perform a measurement
that projects onto the basis of U a eigenstates, and determines a value λk

selected equiprobably from the possible eigenvalues. Hence the measurement
determines a value of k/r, as does Shor’s procedure, and we can proceed to
factor N with a reasonably high success probability. But how do we measure
the eigenvalues of a unitary operator?

Suppose that we can execute the unitary U conditioned on a control bit,
and consider the circuit:

|0〉

|λ〉

Measure

|λ〉

sH H

U

84 CHAPTER 6. QUANTUM COMPUTATION

Here |λ〉 denotes an eigenstate of U with eigenvalue λ (U |λ〉 = λ|λ〉). Then
the action of the circuit on the control bit is

|0〉 → 1√
2
(|0〉 + |1〉) → 1√

2
(|0〉 + λ|1〉)

→ 1

2
(1 + λ)|0〉 +

1

2
(1 − λ)|1〉. (6.254)

Then the outcome of the measurement of the control qubit has probability
distribution

Prob(0) =
∣

∣

∣

∣

1

2
(1 + λ)

∣

∣

∣

∣

2

= cos2(πφ)

Prob(1) =
∣

∣

∣

∣

1

2
(1 − λ)

)

|2 = sin2(πφ), (6.255)

where λ = e2πiφ.
As we have discussed previously (for example in connection with Deutsch’s

problem), this procedure distinguishes with certainty between the eigenval-
ues λ = 1 (φ = 0) and λ = −1 (φ = 1/2). But other possible values of λ can
also be distinguished, albeit with less statistical confidence. For example,
suppose the state on which U acts is a superposition of U eigenstates

α1|λ1〉 + α2|λ2〉. (6.256)

And suppose we execute the above circuit n times, with n distinct control
bits. We thus prepare the state

α1|λ1〉
(

1 + λ1

2
|0〉 +

1 − λ1

2
|1〉
)⊗n

+α2|λ2〉
(

1 + λ2

2
|0〉 +

1 − λ2

2
|1〉
)⊗n

. (6.257)

If λ1 6= λ2, the overlap between the two states of the n control bits is ex-
ponentially small for large n; by measuring the control bits, we can perform
the orthogonal projection onto the {|λ1〉, |λ2〉} basis, at least to an excellent
approximation.

If we use enough control bits, we have a large enough sample to measure
Prob (0)= 1

2
(1 + cos 2πφ) with reasonable statistical confidence. By execut-

ing a controlled-(iU), we can also measure 1
2
(1 + sin 2πφ) which suffices to

determine φ modulo an integer.

6.11. PHASE ESTIMATION 85

However, in the factoring algorithm, we need to measure the phase of
e2πik/r to exponential accuracy, which seems to require an exponential number
of trials. Suppose, though, that we can efficiently compute high powers of U

(as is the case for U a) such as

U 2j

. (6.258)

By applying the above procedure to measurement of U2j

, we determine

exp(2πi2jφ), (6.259)

where e2πiφ is an eigenvalue of U . Hence, measuring U 2j

to one bit of accu-
racy is equivalent to measuring the jth bit of the eigenvalue of U .

We can use this phase estimation procedure for order finding, and hence
factorization. We invert eq. (6.253) to obtain

|x0〉 =
1√
r

r−1
∑

k=0

|λk〉; (6.260)

each computational basis state (for x0 6= 0) is an equally weighted superpo-
sition of r eigenstates of U a.

Measuring the eigenvalue, we obtain λk = e2πik/r, with k selected from
{0, 1 . . . , r−1} equiprobably. If r < 2n, we measure to 2n bits of precision to
determine k/r. In principle, we can carry out this procedure in a computer
that stores fewer qubits than we would need to evaluate the QFT, because
we can attack just one bit of k/r at a time.

But it is instructive to imagine that we incorporate the QFT into this
phase estimation procedure. Suppose the circuit

|0〉

|0〉

|0〉

|λ〉

1√
2
(|0〉 + λ4|1〉)

1√
2
(|0〉 + λ2|1〉)

1√
2
(|0〉 + λ|1〉)s

s

sH

H

H

U U2 U4

86 CHAPTER 6. QUANTUM COMPUTATION

acts on the eigenstate |λ〉 of the unitary transformation U . The conditional
U prepares 1√

2
(|0〉 + λ|1〉), the conditional U2 prepares 1√

2
(|0〉 + λ2|1〉), the

conditional U 4 prepares 1√
2
(|0〉 + λ4|1〉), and so on. We could perform a

Hadamard and measure each of these qubits to sample the probability dis-
tribution governed by the jth bit of φ, where λ = e2πiφ. But a more efficient
method is to note that the state prepared by the circuit is

1√
2m

2m−1
∑

y=0

e2πiφy|y〉. (6.261)

A better way to learn the value of φ is to perform the QFT(m), not the
Hadamard H(m), before we measure.

Considering the case m = 3 for clarity, the circuit that prepares and then
Fourier analyzes the state

1√
8

7
∑

y=0

e2πiφy|y〉 (6.262)

is

|0〉
|0〉
|0〉

|ỹ0〉
|ỹ1〉
|ỹ2〉r

r

r r r

r

H

H

H

H

1 H

2 1 H

U U2 U4

This circuit very nearly carries out our strategy for phase estimation out-
lined above, but with a significant modification. Before we execute the final
Hadamard transformation and measurement of ỹ1 and ỹ2, some conditional
phase rotations are performed. It is those phase rotations that distinguish
the QFT(3) from Hadamard transform H(3), and they strongly enhance the
reliability with which we can extract the value of φ.

We can understand better what the conditional rotations are doing if we
suppose that φ = k/8, for k ∈ {0, 1, 2 . . . , 7}; in that case, we know that the
Fourier transform will generate the output ỹ = k with probability one. We
may express k as the binary expansion

k = k2k1k0 ≡ k2 · 4 + k1 · 2 + k0. (6.263)

6.12. DISCRETE LOG 87

In fact, the circuit for the least significant bit ỹ0 of the Fourier transform
is precisely Kitaev’s measurement circuit applied to the unitary U 4, whose
eigenvalue is

(e2πiφ)4 = eiπk = eiπk0 = ±1. (6.264)

The measurement circuit distinguishes eigenvalues ±1 perfectly, so that ỹ0 =
k0.

The circuit for the next bit ỹ1 is almost the measurement circuit for U2,
with eigenvalue

(e2πiφ)2 = eiπk/2 = eiπ(k1·k0). (6.265)

Except that the conditional phase rotation has been inserted, which multi-
plies the phase by exp[iπ(·k0)], resulting in eiπk1. Again, applying a Hadamard
followed by measurement, we obtain the outcome ỹ1 = k1 with certainty.
Similarly, the circuit for ỹ2 measures the eigenvalue

e2πiφ = eiπk/4 = eiπ(k2·k1k0), (6.266)

except that the conditional rotation removes eiπ(·k1k0), so that the outcome
is ỹ2 = k2 with certainty.

Thus, the QFT implements the phase estimation routine with maximal
cleverness. We measure the less significant bits of φ first, and we exploit
the information gained in the measurements to improve the reliability of our
estimate of the more significant bits. Keeping this interpretation in mind,
you will find it easy to remember the circuit for the QFT(n)!

6.12 Discrete Log

Sorry, I didn’t have time for this.

6.13 Simulation of Quantum Systems

Ditto.

88 CHAPTER 6. QUANTUM COMPUTATION

6.14 Summary

Classical circuits. The complexity of a problem can be characterized by the
size of a uniform family of logic circuits that solve the problem: The problem
is hard if the size of the circuit is a superpolynomial function of the size of
the input. One classical universal computer can simulate another efficiently,
so the classification of complexity is machine independent. The 3-bit Toffoli
gate is universal for classical reversible computation. A reversible computer
can simulate an irreversible computer without a significant slowdown and
without unreasonable memory resources.

Quantum Circuits. Although there is no proof, it seems likely that
polynomial-size quantum circuits cannot be simulated by polynomial-size
probabilistic classical circuits (BQP 6= BPP); however, polynomial space is
sufficient (BQP ⊆ PSPACE). A noisy quantum circuit can simulate an
ideal quantum circuit of size T to acceptable accuracy if each quantum gate
has an accuracy of order 1/T . One universal quantum computer can simulate
another efficiently, so that the complexity classBQP is machine independent.
A generic two-qubit quantum gate, if it can act on any two qubits in a device,
is adequate for universal quantum computation. A controlled-NOT gate plus
a generic one-qubit gate is also adequate.

Fast Quantum Searching. Exhaustive search for a marked item in an
unsorted database of N items can be carried out by a quantum computer
in a time of order

√
N , but no faster. Quadratic quantum speedups can be

achieved for some structured search problems, too, but some oracle prob-
lems admit no significant quantum speedup. Two parties, each in possession
of a table with N entries, can locate a “collision” between their tables by
exchanging O(

√
N) qubits, in apparent violation of the spirit (but not the

letter) of the Holevo bound.

Period Finding. Exploiting quantum parallelism, the Quantum Fourier
Transform in an N -dimensional space can be computed in time of order
(logN)2 (compared to time N logN for the classical fast Fourier transform);
if we are to measure immediately afterward, one qubit gates are sufficient
to compute the QFT. Thus quantum computers can efficiently solve certain
problems with a periodic structure, such as factoring and the discrete log
problem.

6.15. EXERCISES 89

6.15 Exercises

6.1 Linear simulation of Toffoli gate.

In class we constructed the n-bit Toffoli gate (θ(n)) from 3-bit Toffoli
gates (θ(3)’s). The circuit required only one bit of scratch space, but
the number of gates was exponential in n. With more scratch, we can
substantially reduce the number of gates.

a) Find a circuit family with 2n − 5 θ(3)’s that evaluates θ(n). (Here n −
3 scratch bits are used, which are set to 0 at the beginning of the
computation and return to the value 0 at the end.)

b) Find a circuit family with 4n−12 θ(3)’s that evaluates θ(n), which works
irrespective of the initial values of the scratch bits. (Again the n − 3
scratch bits return to their initial values, but they don’t need to be set
to zero at the beginning.)

6.2 A universal quantum gate set.

The purpose of this exercise is to complete the demonstration that the
controlled-NOT and arbitrary one-qubit gates constitute a universal
set.

a) If U is any unitary 2×2 matrix with determinant one, find unitary A,B,
and C such that

ABC = 1 (6.267)

AσxBσxC = U . (6.268)

Hint: From the Euler angle construction, we know that

U = Rz(ψ)Ry(θ)Rz(φ), (6.269)

where, e.g., Rz(φ) denotes a rotation about the z-axis by the angle φ.
We also know that, e.g.,

σxRz(φ)σx = Rz(−φ). (6.270)

b) Consider a two-qubit controlled phase gate: it applies U = eiα1 to the
second qubit if the first qubit has value |1〉, and acts trivially otherwise.
Show that it is actually a one-qubit gate.

90 CHAPTER 6. QUANTUM COMPUTATION

c) Draw a circuit using controlled-NOT gates and single-qubit gates that
implements controlled-U , where U is an arbitrary 2× 2 unitary trans-
formation.

6.3 Precision.

The purpose of this exercise is to connect the accuracy of a quantum
state with the accuracy of the corresponding probability distribution.

a) Let ‖ A ‖sup denote the sup norm of the operator A, and let

‖ A ‖tr= tr
[

(A†A)1/2
]

, (6.271)

denote its trace norm. Show that

‖ AB ‖tr ≤ ‖ B ‖sup · ‖ A ‖tr and | tr A | ≤ ‖ A ‖tr .
(6.272)

b) Suppose ρ and ρ̃ are two density matrices, and {|a〉} is a complete or-
thonormal basis, so that

Pa = 〈a|ρ|a〉,

P̃a = 〈a|ρ̃|a〉, (6.273)

are the corresponding probability distributions. Use (a) to show that

∑

a

|Pa − P̃a| ≤ ‖ ρ − ρ̃ ‖tr . (6.274)

c) Suppose that ρ = |ψ〉〈ψ| and ρ̃ = |ψ̃〉〈ψ̃| are pure states. Use (b) to show
that

∑

a

|Pa − P̃a| ≤ 2 ‖ |ψ〉 − |ψ̃〉 ‖ . (6.275)

6.4 Continuous-time database search

A quantum system with an n-qubit Hilbert space has the Hamiltonian

Hω = E|ω〉〈ω|, (6.276)

6.15. EXERCISES 91

where |ω〉 is an unknown computational-basis state. You are to find
the value of ω by the following procedure. Turn on a time-independent
perturbation H ′ of the Hamiltonian, so that the total Hamiltonian
becomes

H = Hω + H ′. (6.277)

Prepare an initial state |ψ0〉, and allow the state to evolve, as governed
by H , for a time T . Then measure the state. From the measurement
result you are to infer ω.

a) Suppose the initial state is chosen to be

|s〉 =
1

2n/2

2n−1
∑

x=0

|x〉, (6.278)

and the perturbation is

H ′ = E|s〉〈s|. (6.279)

Solve the time-independent Schrödinger equation

i
d

dt
|ψ〉 = H|ψ〉 (6.280)

to find the state at time T . How should T be chosen to optimize the
likelihood of successfully determining ω?

b) Now suppose that we may choose |ψ0〉 and H ′ however we please, but
we demand that the state of the system after time T is |ω〉, so that
the measurement determines ω with success probability one. Derive a
lower bound that T must satisfy, and compare to your result in (a).
(Hint: As in our analysis in class, compare evolution governed by H

with evolution governed by H ′ (the case of the “empty oracle”), and
use the Schrödinger equation to bound how rapidly the state evolving
according to H deviates from the state evolving according to H ′.)

