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It is pointed out that the use of the ‘‘decoupling’” constraints on the spectrum of composite
massless particles is not justified without further assumptions. There is an alternative condition,
whose use would not be subject to the same criticisms, which would lead to the same con-
straints as the decoupling condition, and which would lead to other results as well, for instance
that the nonchiral global symmetries in quantum chromodynamics (QCD) with n massless fla-
vors can not be spontaneously broken. However, this condition is found to be violated in a
specific model. It is still an open possibility that the chiral symmetries of QCD are unbroken for

n not a multiple of 3.

Composite spin-% fermions of zero mass can occur
naturally in gauge theories with unbroken global
chiral symmetries. Recently, 't Hooft has proposed
conditions! on the spectrum of massless bound states
in these theories that would require that massless
composite particles actually do occur as long as the
global chiral symmetries are unbroken. In many
cases these conditions are so stringent that they can-
not be satisfied at all, which would imply that these
symmetries are spontaneously broken.

The first of ’t Hooft’s conditions is that the mass-
less composite particles must reproduce the same
Adler-Bell-Jackiw? anomalies as are produced by the
elementary fermions in the currents of all unbroken
global chiral symmetries. This condition can probably
be proved as a necessary consequence of the sym-
metry, analyticity, and high-energy behavior of gauge
theories,® and it tells us that massless composite par-
ticles must occur if the chiral symmetries are unbro-
ken, but by itself it does not in most cases place
severe restrictions on the spectrum of massless com-
posite particles that can occur.

This Communication concerns the second of
’t Hooft’s conditions, known as the ‘‘decoupling con-
dition.”” This condition was introduced by ’t Hooft as
an example of a subsidiary condition that can be used
to pick out a particular set of massless composite par-
ticles from among all those sets which satisfy the
. anomaly condition. It is the combination of the
decoupling condition with the anomaly condition that
was found in Ref. 1 to be so restrictive that it could
be concluded in many cases that chiral symmetries
must be spontaneously broken. In brief, the con-
clusion reached here is that the use of constraints
derived from the decoupling condition is not justi-
fied; that this condition may be replaced with a
stronger condition, the ‘‘persistent-mass condition,”’
whose use would not be subject to the same criti-
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cisms and which would lead to the same conclusions;
but that at least in some models the persistent-mass
condition is not valid either.

In its original formulation, the decoupling condi-
tion requires that the composite particles of any
gauge theory must be such that when one of the ele-
mentary fermions in the theory is given a large in-
trinsic mass, the remaining unbroken chiral sym-
metries permit all composite particles containing this
fermion also to get a large mass. For instance, in a
gauge theory in which both left- and right-handed
fermions form » equivalent complex representations
of the gauge group (‘“‘flavors”’), the Lagrangian in
the absence of bare masses or scalar fields will au-
tomatically have a global SU(n), xSU(n)g xU(1),
symmetry. If this symmetry is unbroken, there will
be a set of massless spin-% composite fermions*
forming representations (D;,Dg) of SU(n),
xSU(n)g xU(1), with D, # Dg. When one of the
n fermion flavors is given a large intrinsic mass, the
symmetry of the Lagrangian is reduced to SU(n —1),
xSU(n —1)g xU(1) 2 The decoupling condition
requires that the composite particles which contain
the heavy quark must not be prevented by this
remaining symmetry from becoming heavy.

Stated in this way, the decoupling condition ap-
pears as a very plausible consequence of the general
idea that particles with large masses should drop out
of the theory of lower energy states.®> The trouble is
that in order to apply this condition as it is applied in
Ref. 1, it is necessary to make another assumption,
that the pattern of spontaneous symmetry breaking
and the representation content of bound massless
particles do not change when one of the elementary
fermions is given a very large intrinsic mass. For in-
stance, in applying the decoupling condition to the n-
flavor gauge theory mentioned above, it was tacitly
assumed in Ref. 1 not only that the SU(n), xSU(n)g

1059 ©1981 The American Physical Society



1060 RAPID COMMUNICATIONS 24

xU(1), global symmetry of the Lagrangian is not
spontaneously broken when all fermion masses van-
ish, but also that the SU(n —1), xSU(n —1)4

x U(1),? symmetry of the Lagrangian with one mas-
sive quark remains not spontaneously broken when
the massive quark becomes very heavy. Otherwise,
the SU(n —1), xSU(n —1) g x U(1) %-representation
content of the composite particles would, of course,
be irrelevant in determining whether composite parti-
cles containing the heavy quark become heavy.

It seems to us quite possible that the underlying
idea of decoupling is correct, but that its application
in Ref. 1 is invalid, because a phase transition may
occur when one of the elementary fermion masses
becomes sufficiently large. This phase transition
could involve either a change in the pattern of spon-
taneous symmetry breaking or a change in the set of
massless composite fermions unaccompanied by a
change in symmetry, or both. For instance, in the
n-flavor gauge theory discussed above, if the
SU(n), xSU(n) g xU(1), symmetry of the Lagran-
gian is not spontaneously broken when all of the fer-
mions are massless, then clearly the remaining
SU(n —1), xSU(n —1)g xU(1) 2 symmetry is un-
broken when one of the fermions is given a very
small mass. There may be composite states that con-
tain this massive quark, but are kept massless by this
chiral symmetry. For example, in the n =4 case
there is a simple set of massless composite three-
fermion states that satisfy the anomaly condition,
forming SU(4), X SU(4)y representations (4, 6)
+3(4,1) for helicity +5 and (6,4) +3(1,4) for hel-
icity — % When one of the four quark flavors is
given a small mass, the states containing one massive
quark form SU(3), xSU(3)4 representations
(3,3) +(1,3) +3(3,1) for helicity + and
(3,3) +(3,1) +3(1,3) for helicity — 5, while the
states containing two massive quarks form an
SU(3), xSU(3) representation (1,3) for helicity
+% and (3,1) for helicity —%. Thus as long as

SU(3), xSU(3)z xU(1),? remains unbroken, there
will be two massless (3, 1) states of helicity +—;— con-
taining one massive quark, and one massless (1,3)
state of helicity +% containing two massive quarks,
plus their parity conjugates. In such cases, the re-
quirement of decoupling must be met by the inter-
vention of a phase transition, at which the

SU(n —1); xSU(n — 1)z symmetry becomes broken
or the pattern of bound states changes when one of
the quark masses becomes sufficiently large.

This discussion suggests an alternative to the
decoupling condition, which we will call the
‘“persistent-mass condition.”” This condition can be
stated as follows:

The composite particles of any gauge theory must
be such that when one of the elementary fermions in
the theory is given any mass, the remaining unbro-

ken chiral symmetries permit all composite particles
containing this quark also to get some mass.

This condition is clearly stronger than the decou-
pling condition of Ref. 1, and is based on intuitive
ideas about the masses of composite systems rather
than on known properties of quantum field theories.
However, the persistent-mass condition can be ap-
plied without any assumptions about the stability of
the pattern of spontaneous symmetry breaking or the
spectrum of bound states as masses tend to infinity.
In applying this condition, we need only consider the
case when one elementary fermion is given an infini-
tesimal mass, whgf/w/e do know the unbroken sym-
metries of the theory. For instance, in the n-flavor
gauge theory, if SU(n); xSU(n)g xU(1)y is not
spontaneously broken when all fermions are mass-
less, then SU(n —1), xSU(n —1)g xU(1),? is un-
broken when one fermion is given an infinitesimal
mass. All the consequences of the decoupling condi-
tion derived in Ref. 1 follow also from the
persistent-mass condition, because the limit of very
large fermion mass was used in Ref. 1 only in justify-
ing the decoupling condition, not in applying it.

The persistent-mass condition leads to other conse-
quences as well, that may be used to judge its validi-
ty. In the n-flavor gauge theory with zero fermion
masses discussed above, the complete spontaneous
breakdown of the SU(n), xSU(n)z symmetry of the
Lagrangian would entail the existence of n2—1 scalar
as well as n2 —1 pseudoscalar massless Goldstone bo-

_ sons, all of which are interpreted as composites of

quarks and antiquarks. If the » fermion flavors are
given small equal intrinsic masses, the n?—1 odd-
parity symmetries of SU(n); x SU(n)z become in-
trinsically broken and the corresponding pseudoscalar
Goldstone bosons become massive, in accord with
the persistent-mass condition. However, the posi-
tive-parity SU(n) generators are not intrinsically bro-
ken by equal fermion masses, so the n?—1 scalar
Goldstone bosons remain massless, in contradiction
with the persistent-mass condition. Thus the
persistent-mass condition would have as a conse-
quence that although the negative-parity generators
of SU(n), xSU(n)g can be spontaneously broken,
the positive-parity SU(#n) subgroup cannot be. In
general, the persistent-mass condition implies that
any continuous flavor symmetry which allows all fla-
vors to acquire mass cannot be spontaneously broken.

This is a powerful result, and would allow us to ex-
plain in quantum chromodynamics (QCD) with three
light quarks why the SU(3) of the ‘‘eight-fold way”’
is not spontaneously broken. But before we accept
this explanation, let us consider whether these conse-
quences of the persistent-mass condition are actually
satisfied in a specific model.

The model considered here is a variant of the old
Nambu—Jona-Lasinio (NJL) model® of spontaneous
symmetry breaking, but the spontaneously broken
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symmetry is a nonchiral isospin symmetry rather than
a chiral symmetry. We consider an isotopic doublet

Y of spin-% fields, described by the isospin-conserving
Lagrangian

L=—3(y*d, +m)y+5G(J7y)? . (1

Here 7 are the Pauli isospin matrices, my is a bare
mass matrix that commutes with 7, and G is a free
coupling constant. As in the NJL model, this
Lagrangian is nonrenormalizable, and an ultraviolet
cutoff A is introduced to deal with infinities. Also as
in the NJL model, the fermion self-energy is calculat-
ed from the one-loop diagram, using the dressed
mass matrix m in the virtual fermion propagator.
This yields an implicit equation for m:
__iG
2m)*

m=my J atkt7Teis Gm) 7)

-7-S(k,m7] , @

where S (k,m) = (iy,k*+m)~" is the fermion propaga-
tor. Also, in the first-order approximation for the ker-
nel, the Bethe-Salpeter equation for composite fermion-
antifermion systems of total four-momentum p* is

iG
2m)*

¥(g3p) = J a7 Teis (k= )W (k) S (0 7)

— 7 Sk -p)¥(k:p)SK) 7] .

3)

It is elementary to check in this model that the spon-
taneous breakdown of isospin conservation implies
the existence of massless Goldstone bosons; that is,
if m is a solution of Eq. (2) with [ 7,m] #0, then Eq.
(3) is satisfied for p#=0, with

V,(g;0)=[r,,ml . 4)
So it is only necessary to find broken-symmetry solu- '
tions of Eq. (2) in order to conclude that this model
involves massless composite bosons.

Without loss of generality, we can always choose
the isospin basis so that

m=mg+myt; . (5)
Equation (2) then yields two equations
3Gmg fA (k2 + ms? — my?) k3dk
mg = mgoy—

872 Yo (k?+mg?+my2)?—4mgim,?
(6)
A (k2 +my? — mg?) kdk
==—=m 7
3w Vj; (k*+mg? +my?)? —dmg*m,? @

First let us consider the case my=0. Equation (6)
then has the solution mg =0, and for m, #0, Eq. (7)
reduces to

8w’ f" K3dk

9G 0 (k2 + myz)
The right-hand side takes all values from 0 to A%/2,
so Eq. (8) has a solution with m, =0 for
G > 167%/9A2% Thus for my=0, isospin is broken
for sufficiently strong coupling, and the massless
fermions form massless bound states.

(®

Now let us turn on the intrinsic fermion masses.
Since we found a solution with m, #0 for my=0, we
would expect such a solution to exist for at least a
small range of values of my, and this is borne out by
detailed calculation: The symmetry-breaking mass
term my is shifted by an amount of order my2, and
thus remains nonzero for mg sufficiently small. It
follows then that the Bethe-Salpeter equation (3) has
the zero-mass solution (4) for such values of my.
The “‘persistent mass’’ condition is definitely violated
here; massless composite particles are formed from
constituents with nonzero intrinsic masses. This
counter-intuitive result is possible here because,
when we vary the intrinsic fermion mass m,, mg and
my are forced by Egs. (6) and (7) to adjust in such a
way as to keep the composite boson massless.

What about decoupling? For any fixed value of
G A? greater than 167%/9, there is a critical value of
|mg|, at which m, drops to zero. (For instance, for
G A? >> 1672/9, the critical value of |myg| is 0.48
G A3/8%2.) At larger values of |my|, isospin sym-
metry is restored, and there no longer is a bound
state at zero mass. The phase transition is second or-
der, and the spectrum of the model varies continu-
ously, but nonanalytically, through the transition.
Eventually, for ‘mol sufficiently large, the mass of
any fermion-antifermion state simply approaches
2|mo|. This is in accord with our general expecta-
tions about the decoupling of heavy particles, but
these expectations cannot be relied on in. this model
to tell us anything about the spectrum of composite
particles when m =0, because a phase transition
separates the regions of large and small m,.

Of course, this model has many special features,
and it is possible that the persistent-mass condition
might be valid in more realistic theories, like QCD.
The example given here only shows that we cannot
without further argument rely on the intuitive idea
that massive constituents make massive composites.

If we do give up the constraints that have been
derived from the persistent-mass or decoupling con-
ditions, we find a wide variety of possible sets of
massless composite fermions in theories with unbro-
ken chiral symmetries. For instance, in QCD with »
quark flavors, the anomaly condition can be satisfied
by massless composite fermions of helicity +% be-
longing to the SU(n), x SU(n) representations:
n=2: (2,1) ,
n=4: (4,6)+3(4,1) ,
n=>5: (510)+2(i0,1) ,
n=T 3(84,1)+2(35,1) +4(7,28) +(7,21) ,
n=8: (120,1)+6(1,56) +(8,36) +4(28,8) ,
n=10: 3(220,1) +2(120,1) +2(10,55)

+(45,10) +2(1,330) ,
n=11: 5(165,1) +(11,66) +5(11,55) +(440,1) ,
n=13: (455,1) +5(1,286) +(13,91) +4(78,13) ,
n=14: 3(1,560) +2(1,364) +3(14,91) +4(910,1) ,
n=16: 4(816,1) +3(560,1) +(16,136)

+2(120,16) +4(1,1360)
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plus their parity conjugates. There are no sets of
composite particles that are consistent with the ano-
maly condition when # is a multiple of 3, because the
SU(n); xSU(n), xU(1), anomaly in this case is a
multiple of 3 for any color-singlet states, while the
elementary quarks in QCD give an anomaly of unity.
But there are an infinite number of possible sets of
massless composite fermions that do satisfy the ano-
maly conditions, for ail values of » that are not mul-
tiples of 3.

From ’t Hooft’s observation! that there are no sets
of massless composite fermions that satisfy all the
constraints derived from the decoupling and anomaly
conditions in QCD with n > 2, we learn that com-
pletely unbroken chiral symmetry in QCD would im-
ply the existence of a phase transition. For suppose
that the chiral symmetries of QCD with some
number n > 2 of massless flavors are not spontane-
ously broken. Then the constraints derived in Ref. 1
from the decoupling condition must be violated, and
we have seen that this can happen only if a phase
transition occurs when one of the n quarks is given a
sufficiently large intrinsic mass while the other n —1
quarks remain massless.

It is instructive to speculate about the nature of
this phase transition. One might infer from its ex-
istence that the SU(n —1), xSU(n —1); symmetry
of the theory with one massive quark becomes spon-
taneously broken when the mass of this quark is suf-
ficiently large. But when one quark’s mass becomes
very large, all others remaining zero, QCD with »
massless flavors goes over to QCD with n —1 mass-
less flavors. Thus we would conclude that, if the
chiral symmetries of QCD are not spontaneously bro-
ken for n massless flavors, then they must be spon-
taneously broken for » —1 massless flavors. Further-
more, Bars’ has generalized the analysis of Ref. 1 to
the case in which k flavors simultaneously receive the
intrinsic mass m, while n — k flavors remain massless.
Again one finds that, if the chiral symmetries are not
spontaneously broken in n-flavor QCD, then a phase
transition must occur at a critical value of m, from

which one might infer that the chiral symmetries of
QCD must be spontaneously broken for n — k fla-
vors. As Bars’ points out, this line of reasoning leads
to the conclusion that the chiral symmetries can escape
spontaneous breakdown for at most one value of n.

However, the existence of a phase boundary
separating the theories with large and small quark
mass m does not necessarily imply that the SU(n — k),
xSU(n — k) g xU(1), chiral symmetry cannot be
unbroken for both large and small m. The phase
transition could be a discontinuous change in the
spectrum of the theory not associated with a change
in symmetry, an accidental degeneracy of two chiral-
invariant vacuums at some value of m. Alternatively,
there may be two (or more) critical values of m at
which chiral symmetry is first spontaneously broken
and then restored as m increases, in which case the
transitions may be either first order or second order.
Hence, it is still an open possibility that the chiral
symmetries of QCD are not spontaneously broken for
more than one value of n, including perhaps consecu-
tive values of » which are not multiples of 3.

The chiral symmetries of QCD can escape spon-
taneous breakdown for some » only if the qualitative
behavior of QCD is sensitively dependent on n.
Chiral symmetries are spontaneously broken if » is a
multiple of 3,% or if the number of colors is even or
large.® The persistent-mass condition, if valid, would
allow us to conclude that the chiral symmetries of
QCD for any n > 2 are spontaneously broken and
that the nonchiral symmetries are not spontaneously
broken. However, we believe that the persistent-
mass condition has no general quantum field-
theoretic basis. Instead, a different criterion is need-
ed to determine how n-flavor QCD actually chooses
to realize its global flavor symmetries.
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