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Abstract 

A black hole can carry “quantum hair” that, while undetectable classically, 
can influence quantum physics outside the event horizon. The effect of 
quantum hair on black hole thermodynamics is computed here, in a par- 
ticular field-theoretic model. 

to be exhaustive, but it will demonstrate that quantum hair 
can exist, and that it can have dramatic and computable 
effects on the thermodynamic behaviour of a black hole. We 
Will  also gain Some insight into the isSue Of the final State Of 

an evaporating black hole. 

1. Introduction 2. Quantum hair and the Aharonov-Bohm effect 

The remarkable black hole uniqueness theoremsf assert that 
a stationary black hole can be completely characterized by its 
mass, angular momentum, and electric charge. Since a black 
hole carries (almost) no “hair,” an observer outside the event 
horizon is (almost) completely ignorant of the black hole’s 
internal state. This absence of hair has therefore been cited as 
the explanation of the intrinsic black hole entropy that was 
conjectured by Bekenstein [2] and calculated by Hawking [3]. 

However, it is important to remember that the “no-hair 

Krauss and Wilczek [5] pointed out that quantum hair may 
arise in a gauge theory as a consequence of the Higgs mechan- 
ism. To illustrate this phenomenon, we consider a theory with 
gauge group U(l)  that contains both a charge-N scalar field 
q and a charge- 1 scalar field 4; under a gauge transformation 
parametrized by o(x), these fields transform as 

o: + + e’”+, 

q + eiNo I I .  (2.1) 
theorems” are statements about the solutions to classical field 
equations. These theorems do not exclude the possibility that 
black holes can carry additional attributes that influence 

Suppose that (in unitary gauge) q condenses in the vacuum 
state, and + does not, 

quantum physics outside the horizon, but cannot be 
described in classical language. Such “quantum hair,” were it 
to exist, would require us to re-examine our ideas about black 
hole thermodynamics, and about quantum mechanics in a 
black hole background. 

In this talk, I will describe a possible variety of quantum 
hair that has recently attracted attention, and will explore 
some implications concerning black hole physics. 

The classical no-hair theorems invite us to propose a more 
general no-hair principle - that when an event horizon 
forms, any feature of a black hole that can be radiated away 
will be radiated away [4]. Properties that cannot be radiated 
away are those that can be detected, at least in principle, at 
infinite range. With this motivation, the term “hair” might be 
used, in a broader context than black hole physics, to mean 
an attribute of a localized object that can be measured at 
arbitrarily long range. Hair, in this sense, can be either clas- 
sical or quantum-mechanical. Classical hair, like electric 
charge, is associated with a long-range classical field. Quan- 
tum hair is associated with a long-range Aharonov-Bohm 
phenomenon that has no classical analog. The quantum hair 
that will be considered here is of this Aharonov-Bohm type. 

Of course, it is quite possible that, in order to give a 
complete description of quantum mechanics on a black hole 
background, it will be necessary to ascribe to the black hole 
many additional properties that have nothing to do with the 
Aharonov-Bohm effect. In other words, a black hole might 
have many varieties of quantum hair that are outside the 
scope of the analysis in this talk. This analysis is not intended 

- 
* Invited talk at Nobel Symposium no. 79: The Birth and Early Evolution 

t See [I] for references. 
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( q )  = ‘U # 0, (4) = 0. (2.2) 
Then the Higgs mechanism occurs; the photon acquires a 
mass p - Nev and the classical electric fieid of a charge 
decays at long range like 

E - e-iiR, pR + 1 .  (2.3) 
However, the local U( 1) symmetry is not completely 

broken. There is a surviving manifest Z, local symmetry 
under which the scalar fields transform according to 

+ q ,  + -+ eZniklN 4, k = 0 , 1 , 2  , . . . ,  N - 1 .  (2.4) 

The physical content of the surviving Z, symmetry is that, 
because the condensate that screens the classical electric field 
of a charge is a condensate of c h a r g e 4  q particles, the con- 
densate is not capable of screening the charge modulo N .  

But if the classical electric field of any charge decays 
according to eq. (2.3), what does it mean to say that the 
charge modulo N is unscreened? That is, how can the charge 
modulo N be detected at long range? The key point is that the 
Higgs phase with manifest Z ,  local symmetry supports a 
“cosmic string.” The core of this string traps a quantity of 
magnetic flux @,,/N, where (Do = 27c/e is the flux quantum 
associated with a particle of charge 1. (Hence e is the gauge 
coupling.) Thus, when a charge-1 4 particle winds around the 
string, it acquires the nontrivial Aharonov-Bohm phase [6] 

exp (ie 4, A - dx) = e2”IN 

This Aharonov-Bohm phase induces a long-range inter- 
action between the string and the + particle. For example, 
although the string has a thickness of order p- ’  , a + particle 
incident on the string with energy E 4 p scatters with a 
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cross-section that is independent of the string thickness [6, 71. 
Similarly, a closed loop of string that winds around an object 
with nonzero Z, charge acquires a nontrivial Aharonov- 
Bohm phase, and so the charge scatters an incident string 

Even though the photon has acquired a mass due to the 
Higgs mechanism, and classical electric fields are screened, 
the Aharonov-Bohm interaction is of infinite range. This 
interaction enables us, in principle, to measure the ZN charge 
of an object while maintaining an arbitrarily large separation 
from the object. Thus, Z, charge is a type of quantum hair [ 5 ] .  

That such infinite-range phenomena can occur in the 
Higgs phase, even though there is a mass gap, has a number 
of interesting consequences. For one, the existence (or not) 
of a long-range Aharonov-Bohm interaction provides a 
criterion for distinguishing different phases of a gauge theory 
- in the model just described, we have seen that two different 
Higgs phases, with manifest and spontaneously broken Z, 
symmetry, can be distinguished in this manner. This obser- 
vation is readily generalized to other models [8]. 

Furthermore, fascinating new phenomena occur in models 
such that the unbroken gauge symmetry in the Higgs phase 
is nonabelian. There can be infinite-range processes in which 
charges are transferred between point particles and string 
loops, by means of the nonabelian Aharonov-Bohm effect 

But our main interest here is in the implications of Z, 
quantum hair for black hole physics, to which we now turn. 

loop. 

~ ~ 9 1 .  

3. The no-hair theorem and the Higgs mechanism 

In a U(l) gauge theory in the Coulomb phase (in which the 
photon is massless), an electrically charged particle has an 
infinite-range electric field. Gauss’s law ensures that his long- 
range electric field cannot be extinguished when the particle 
disappears behind the event horizon of a black hole. Thus we 
learn that a black hole must be able to carry electric charge; 
electric charge is a type of classical hair. 

Now suppose that the Higgs mechanism occurs, so that the 
photon acquires a mass p.  The electric field of a charge decays 
at long range like E - e-pR, where R is the distance from the 
charge. But if a charged particle drops into a black hole, the 
event horizon refuses to support a static electric field, and the 
exponentially decaying long-range field cannot survive [lo]. 
The no-hair principle (“whatever can be radiated is radiat- 
ed”) requires the electric flux to leak away from the horizon, 
either by propagating through the horizon or by escaping to 
infinity. If the photon Compton wavelength p- ’  is much 
larger than the black hole radius RBH, then the characteristic 
time scale (in terms of Schwarzschild time t )  for this leakage 
process is of order p-’.* The analysis leading to the above 
conclusion is purely classical, and it is not affected if the 
Higgs mechanism leaves unbroken a local Z, symmetry. 
Once the photon acquires a mass, regardless of any surviving 
manifest discrete symmetry, a stationary black hole that is 
nonsingular at the event horizon must have a vanishing clas- 
sical electric field outside the horizon. 

But this classical analysis cannot exclude the possibility 
that a black hole may carry quantum hair. Indeed, we know 

that a particle with nonzero Z ,  charge (electric charge 
modulo N )  has an infinite-range Aharonov-Bohm inter- 
action with a cosmic string. This long-range interaction can- 
not be extinguished when the particle disappears behind the 
event horizon of a black hole. Thus we learn that a black hole 
must be able to carry ZN charge;+ Z, charge is a type of 
quantum hair. 

It is essential to recognize that the Aharonov-Bohm inter- 
action remains undiminished even as the classical electric field 
decays. This is already evident when we note that the phase 
acquired by a loop of string that winds around a Z, charge 
is nontrivial when the trajectory of the string stays arbitrarily 
far from the charge, even though the electric field encoun- 
tered by the string is exponentially small. Likewise, the phase 
acquired by a loop of string a fixed distance from a charge 
persists even after the charge crosses the black hole horizon, 
and the electric field leaks away. 

Aside from the Z, quantum hair described here, another 
exotic type of black hole hair has attracted attention recently 
- axionic hair [11]. Rather than digress here on this topic, I 
have relegated a comparison of Z, hair and axionic hair to an 
appendix. 

4. Challenges posed by black hole radiance 

Having established that a black hole can carry a conserved Z N  
charge, even though no massless gauge field couples to the 
charge, we now wish to consider how the ZN charge influences 
the Hawking radiation emitted by the black hole. Our hope 
is that some of the mysterious aspects of black hole radiance 
can be illuminated by this investigation. 

Specifically, the semiclassical theory of black hole radiance 
developed by Hawking [3] raises (at least) three fundamental 
issues, none of which can be satisfactorily addressed within 
the context of the leading semiclassical approximation. These 
issues, enumerated below, are all closely related but are 
logically distinct. 

4.1. The loss of quantum coherence 
In Hawking’s semiclassical theory, the radiation emitted by 
an evaporating black hole is described by a density matrix 
that is exactly thermal [12]. Since the outgoing radiation is in 
a mixed state, one might argue (as Hawking [I31 does) that 
scattering of quanta off a black hole cannot be described in 
the usual S-matrix language - an incoming pure state can 
evolve into an outgoing mixed state. Similarly, a black hole 
that forms from collapse in a state that is initially pure will 
eventually evaporate and yield a mixed final state. A black 
hole, then, appears to provide a means of destroying 
quantum-mechanical phase information. If so, quantum mech- 
anics as currently formulated is not applicable to processes 
involving black holes, and must be replaced by some more 
general formalism. 

This remarkable suggestion is much too radical to be 
accepted lightly; we are obligated to subject it to the closest 
scrutiny. In particular, the argument for a loss of quantum 
coherence presumes that the thermal character of the out- 
going density matrix computed by Hawking is an intrinsic 
property of the final state, and not a mere artifact of the 
approximations that are made in the leading semiclassical 

* I thank Kip Thorne for a helpful discussion about this. As Krauss and Wilczek [5]  noted. 
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theory. The calculations performed to date do not, I think, 
exclude the possibility that the outgoing radiation, when 
examined with sufficient care, actually carries all of the com- 
plex phase information contained in the initial state from 
which the black hole formed. But if quantum coherence is 
indeed preserved in black hole processes, it seems to be 
necessary for black holes to be able to carry non-classical 
varieties of hair.’ Only then is it reasonable to claim that the 
radiation emitted early on leaves an imprint on the black hole 
that can influence the radiation emitted later, thus establish- 
ing quantum-mechanical correlations between radiation 
emitted at different times. 

4.2. The origin of black hole entropy 
A remarkable consequence of Hawking’s semiclassical theory 
of black hole radiance is that a black hole has an enormous 
intrinsic entropy (as Bekenstein [2] had anticipated). Efforts 
to attach a sensible physical interpretation to this entropy 
have been partially successful,+ but I think that the ultimate 
origin of the black hole entropy remains quite obscure. In 
general, the statistical-mechanical entropy of a system arises 
because the system has access to many microscopic internal 
states as it undergoes thermal fluctuations. Unless black holes 
are fundamentally different than other systems, then, it 
should be possible to relate the black hole entropy to a large 
number of accessible black hole microstates. Because a clas- 
sical black hole has no hair, the intrinsic entropy suggests that 
a black hole has many non-classical degrees of freedom. 

The black hole entropy, then, like the apparent loss of 
quantum coherence, hints at the existence of “quantum hair” 
on black holes. It does not seem likely that all of the entropy 

SBH = k A B H ,  (4.1) 
where ABH is the area of the event horizon in Planck units, can 
be attributed to hair of the Aharonov-Bohm type that we will 
consider here. Rather, eq. (4.1) tempts one to conjecture that 
the quantum-mechanical internal state of a black hole can be 
described in terms of a membrane stretched over the horizon 
that is approximately one Planck length deep and is charac- 
terized by about one bit of information per Planck volume. 
Such a picture has been advocated by ’t Hooft [14]. 

4.3. Thejnal  state 
An evaporating black hole loses mass. Eventually, as the 
mass approaches the Planck mass Mp, Hawking’s semiclas- 
sical theory breaks down, for quantum fluctuations in the 
background geometry can no longer be neglected. At this 
point, we are unable to predict what will happen without a 
deeper understanding of quantum gravity than we currently 
possess. 

The black hole may evaporate completely, leaving behind 
no trace other than the emitted radiation. It is also conceiv- 
able that the evaporation halts, leaving behind a stable black 
hole remnant. This remnant would be a new type of “elemen- 
tary” particle, presumably with a mass comparable to Mp . 
Whether a black hole evaporates completely may have 
important implications for quantum cosmology - Hawking 

has argued that if a black hole can form and subsequently 
disappear, then we have strong evidence that fluctuations in 
the topology of spacetime must be included in quantum 
gravity [19]. 

The three issues outlined above are all of fundamental 
interest. They all also have in common that they cannot be 
adequately addressed within the leading semiclassical theory 
of black hole radiance, and so they provide us with powerful 
motivation for improving on that theory. 

5. Black holes with ZN quantum hair 

Our desire for a better grasp of black hole physics beyond the 
leading semiclassical approximation leads us back to the 
black hole with Z, charge described in Section 3 .  The black 
hole with Z, charge provides a model in which dramatic 
corrections to the leading semiclassical theory are expected. 
Furthermore, to a limited extent, these corrections can be 
studied in a systematic and well-controlled approximation. 

To see that dramatic corrections should be expected, let us 
suppose that N 9 1, so that it is possible for the Z, charge 
Q to be a large number. Suppose further that the only elemen- 
tary particles with nonzero Z, charge have charge 1 and mass 
m, where m is small compared to the Planck mass Mp. 

By assembling Q charge-1 particles, with N / 2  > Q 4 1, 
one can create a black hole with charge Q and mass MBH N 
Qm; if N is sufficiently large, we can also arrange that 
MBH 9 Mp, so that semiclassical theory can safely be applied 
to this black hole. The black hole then loses mass by radiating 
gravitons, say, but does not radiate away its Z, charge. 
Eventually, MBH becomes less than, perhaps much less than, 
Qm, yet is still comfortably above Mp. 

At this point, complete evaporation of the black hole to 
elementary quanta is no longer possible; it is kinematically 
forbidden. The Z, charge is exactly conserved, and there is no 
available decay channel with Z, charge Q and a sufficiently 
small mass. Inevitably, then, the evaporation process must 
stop, leaving behind a stable remnant.$ We may regard the 
remnant as an exotic “nucleus,” a highly relativistic bound 
state of Q elementary charged particles. 

However, as noted in Section 3, the Z, quantum hair has 
no effect whatsoever on the classical geometry of a stationary 
black hole. The leading semiclassical theory is just free quan- 
tum field theory on the background geometry of the black 
hole, and so it too is unaffected by the 2, hair. Indeed, the 2, 
hair has no effect to any finite order in the semiclassical 
expansion in h. To understand the mechanism by which the 
Z, hair inhibits the evaporation of a black hole, we must 
investigate physics that is non-perturbative in h. 

6. A remnant stabilized by classical hair 

Before we continue the discussion about 2, quantum hair, it 
will be enlightening to consider an example of a black hole 
remnant that is stabilized by classical hair - an electrically 
charged black hole.§ We can concoct a model in which the 

* This point has been especially stressed by ’t Hooft [14]. See [15-171 for 

+ I am thinking in particular of the “thermal atmosphere” picture developed 
other critiques of the proposal in [13]. 

in [18]. 
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It is a logical possibility that the charge-Q object will be able to decay into 
black holes of lower charge and mass, but the existence of at least one 
species of exotic stable remnant is guaranteed. 

4 In the case where the photon is massless. 
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complete evaporation of a charged black hole is kinematic- 
ally forbidden. But when the hair is classical, the mechanism 
by which evaporation stops can be discussed in terms of 
familiar semiclassical theory. 

In the Coulomb phase of electrodynamics, electric charge 
on a black hole has two effects, both of which can be des- 
cribed using classical language [20]. First, since the charged 
black hole has an electric field outside the horizon, and the 
electric field carries stress-energy, the electric charge modifies 
the black hole geometry. Specifically, if two black holes have 
the same mass, the one with more charge has a smaller 
surface gravity K ,  and so a smaller Hawking temperature 
TBH = 4271. Second, a charged black hole has a nonzero 
electrostatic potential at the event horizon; if the black hole 
is positively charged, say, then more work is required to carry 
a positive charge than a negative charge from spatial infinity 
to the horizon. In black hole thermodynamics, the electro- 
static potential plays the role of a chemical potential. A 
positively charged black hole cannot be in equilibrium with a 
neutral plasma, because it prefers to emit positive charge and 
to absorb negative charge. 

As a charged black hole evaporates, i t  loses mass. If we 
suppose that its charge Qe remains fixed as it evaporates,* 
then the charge to mass ratio Qe/MBH steadily increases. This 
ratio asymptotically approaches the critical value 1 (in Planck 
units), at which the surface gravity IC and Hawking tem- 
perature T B H  vanish.+ Heuristically, a black hole of given 
mass M B H  has a maximal charge because, when the Coulomb 
energy of order (@?)’/& stored in the electric field outside 
the horizon becomes comparable to MBH , there is no mass left 
over at the center to support the horizon. (In fact, as the 
charge to mass ratio increases toward one, the Cauchy hor- 
izon interior to the event horizon asymptotically approaches 
the event horizon. In this instance, then, the cosmic cen- 
sorship hypothesis [21] can be identified with the third law of 
thermodynamics. A third law of black hole dynamics has 
been proved, under suitable assumptions, by Israel [22]). 

We see that the Hawking evaporation process ceases to 
operate for a maximally charged black hole. Nevertheless, in 
the real world, a maximally charged black hole would con- 
tinue to radiate both charge and mass [20]. The reason is that 
the electrostatic potential energy 

U = eM, (6.1) 
of a positron at the horizon of a positive critically charged 
black hole is enormous compared to the electron mass. 
Hence, dielectric breakdown of the vacuum occurs outside 
the horizon. It is energetically favourable to produce an e+ e- 
pair, allowing the electron to be absorbed by the black hole 
while the positron is ejected to infinity with an ultrarelativistic 
velocity. The black hole would discharge rapidly. 

But since our interest here is in matters of principle, we are 
free to contemplate a fictitious world with 

Gm2 > e2 (6.2) 
where m, e are the electron mass and charge. In this world, 

* Loss of charge is negligible if all elementary charged particles are suf- 
ficiently heavy; see below. 
We assume, for simplicity, that the angular momentum JBH is zero. 
It is conceivable that such an inequality applies, even in the real world, to 
the mass and charge of a magnetic monopole. 

the electrostatic interaction between two electrons is weaker 
than the gravitational interaction. And the electrostatic 
potential energy of an electron at the horizon of a maximally 
charged black hole is less than m, so that dielectric break- 
down of the vacuum cannot occur. The maximally charged 
black hole in this model with MBH = eQMp is lighter than Q 
electrons, and so its decay to elementary quanta is kinematic- 
ally forbidden. 

The only decay channel potentially available to the maxi- 
mally charged black hole is a state containing black holes of 
lower mass and charge. At the classical level, all maximally 
charged black holes have the same charge to mass ratio, so 
that such decay modes would be just marginally allowed. 
However, at  least when the black hole radius RBH is much 
smaller than the electron Compton wavelength m-’, I expect 
that renormalization effects (particularly charge renormaliz- 
ation) cause the charge to mass ratio of the maximally 
charged black hole to increase with increasing M B H  .$ Thus, 
the particle spectrum of the model should contain a whole 
tower of stable black hole “solitons” of increasing charge. 

It could be quite illuminating to consider in detail the 
quantum mechanics of scattering processes involving these 
solitons. On the one hand, it may be feasible, using standard 
methods of soliton quantization, to construct, order by order 
in an expansion in h, an S-matrix for these processes.7 On 
the other hand, if, as Hawking insists, such processes inevi- 
tably involve a loss of quantum-mechanical phase infor- 
mation, then no such S-matrix has a right to exist. 

7. A world-sheet instanton 

In the model just considered, the complete evaporation of a 
black hole can be kinematically forbidden, if the electric 
charge on the black hole is large enough, and we were able to 
understand using semiclassical reasoning why the evapor- 
ation of a charged black hole eventually stops. In the model 
described in Section 5, the complete evaporation of a black 
hole can be kinematically forbidden, if the Z, charge on the 
black hole is large enough. Yet, to any finite order in the 
expansion in h, the Z, charge has no effect on the evaporation 
process. Small fluctuations of the quantum fields on the black 
hole background are completely insensitive to the Z, charge. 

The only readily identifiable quantum fluctuations that do 
depend on the value of the Z, charge are virtual cosmic 
strings that wind around the event horizon of the black hole; 
a string that winds k times around an object with Z, charge 
Q acquires the Aharonov-Bohm phase exp (27cikQlN). We 
need a better grasp of the physics of the cloud of virtual 
strings surrounding a black hole, if we hope to understand the 
effect of Z, quantum hair on black hole radiance. 

In fact, the effects of interest, which are nonperturbative in 
A, can be incorporated into a systematic small-A approxi- 
mation. The analysis is done most conveniently using 
Euclidean path integral methods. And since we are studying 
quantum field theory on the Schwarzschild background, the 

- 
5 Loosely speaking, it is the “bare” charge of the black hole, as measured at 

the distance scale RE,, that enters into the relation eQ = M satisfied by 
a black hole with TBH = 0. The renormalized charge, as measured far 
away, is partially screened by vacuum polarization, and this charge screen- 
ing becomes less effective as RE, increases. 

ll This point was emphasized to be by David Gross. 
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appropriate arena is the Euclidean section of the Schwarzs- 
child geometry [23]. 

The Euclidean section of the Schwarzschild geometry has 
the topology of R2 x S2 .  The plane R2 is parametrized by the 
Schwarzchild radial coordinate r and the Euclidean Schwarzs- 
child time coordinate z. These turn out to be polar coordi- 
nates for the plane; z is actually an angular variable, periodic 
with period P, where P - ’  = T B H  is the Hawking temperature. 
Indeed, this periodicity in Euclidean time provides one (rather 
formal) way of understanding the origin of black hole radi- 
ance [24]. Sitting on top of each point in the plane is a 
two-sphere with radius r .  The two-sphere with minimal 
radius r = R B ,  = 2MB, sits above the origin of the plane. 

We can compute the free energy F of a black hole in 
equilibrium with a radiation bath by using the Euclidean path 
integral method [23]. If the charge of the black hole is not 
specified, then F is given by 

where SE denotes the Euclidean action, and the path integral 
is restricted to geometries with topology R2 x S2 that are 
periodic in z with period PA. Hawking’s black hole thermo- 
dynamics can be recovered in the limit h -, 0 by expanding 
SE about its saddle point, the Euclidean Schwarzschild 
solution. 

If, however, we wish to compute the free energy F(/?, Q) in 
the charge-Q sector of a theory with manifest Z, local sym- 
metry, then the field configurations fall into distinct sectors 
that must be weighted by different phases. This is easiest to 
understand in the “thin-string’’ limit; that is, when the 
natural width p-’ of the string is negligible compared to the 
size R B H  of the black hole. So, to begin with, let us consider 
this limit. 

The path integral includes a sum over the world sheet of 
a (thin) cosmic string. But on a background with R2 x S2 
topology the world sheets are classified by a winding number 
k that specifies how many times the world sheet is wrapped 
around the two-sphere. Dependence of F on the charge Q 
arises because a world sheet with winding number k is 
weighted in the path integral by the Aharonov-Bohm phase 
exp(2nikQ/N).’ The action of the string is just the string 
tension Tstring times the area of the world sheet. So it is evident 
that, among the k = 1 configurations, the one of lowest 
action is such that the world sheet is stretched around the 
two-sphere with the minimal radius R B H  . This configuration 
is the “world-sheet instanton” that dominates the Q-depen- 
dence of the free energy in the limit h -+ 0. 

The presence of the string world sheet perturbs the back- 
ground geometry, but this effect is small if the tension Tstring 
is small in Planck units. So the string world sheet increases the 
action by 

Sstring = r t r i n g  = 4 n R i H  Tstring, (7.2) 
and the one-instanton contribution to the partition function 
is of the form 

~ X P  [-AB, T t r i n g l h l ,  
(e - BF(B.Q))  -SSchwarznchild/h 

one-instanton e 
(7.3) 

- 
* Formally, this phase is introduced into the path integral in order to project 

the sum over states, in the evaluation of the partition function tr(e-Pn), 
onto the states with charge Q. 
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where SSchwarzrchlld is the gravitational action of the Euclidean 
Schwarzschild geometry. This contribution is suppressed 
compared to the leading, Q-independent, term 

(7.4) 
by a factor that is exponentially small when h + 0, or when 
the surface area of the black hole is large compared to the 
inverse string tension. 

By summing the contributions from one instanton and one 
anti-instanton, we find 

pF(p, Q) - pF@, Q = 0) - [l - cos (2nQ/lv>]e-ABHTs‘nng’h. 

This expression is independent of the volume of the radiation 
bath surrounding the black hole, and so should be regarded 
as a contribution to the intrinsic free energy of the black hole. 
From the thermodynamic identity 

(e-BW$Q)) - SSchwarzrhild/h 
zero-instanton e 

(7.5) 

a 
M(P, Q) = -jj CPW,  Q>l, (7.6) 

we may extract the leading dependence on Q of the black hole 
temperature, 

P(MBH, Q )  - P(MBH, Q = 0) 

(7.7) 
- ‘6XMBH rstm, - [I  - cos (ZzQ/N)]e 

Given two black holes with the same mass, the one with 
larger 2, charge is cooler. Quantum hair inhibits the emission 
of Hawking radiation, in a computable manner. 

The Q-dependence of the temperature in eq. (7.7) is 
very weak in the thin-string limit, A B H  Tstnng 9 1. But the 
Q-dependent contribution can be appreciable when 

(7.8) T-1’2  MBH N stnng 

(in Planck units). If rtring is small in Planck units, then, the 
thermodynamic effects of quantum hair can become impor- 
tant while M B H  is still large in Planck units, so that it is 
reasonable to continue to neglect the effects of quantum 
gravity. In order to analyze the Q-dependence when the 
thin-string approximation is no longer valid, it is helpful to 
reformulate the topological classification of the matter field 
configurations in a more general way. 

In this connection, we recall that the abelian Higgs model 
described in Section 2 contains instantons when it is formu- 
lated in flat two-dimensional spacetime. The instanton is just 
the magnetic vortex on RZ, with magnetic flux 2nlNe trapped 
in its core. This instanton survives on a four-dimensional 
Euclidean background, ifthe background has the topology of 
R2 x S2. In the thin-string limit, our world-sheet instanton 
may be re-interpreted as just such a vortex. The advantage of 
this interpretation is that the vortex-number classification of 
the field configurations can be extended to the regime in 
which the thin-string approximation no longer applies, and 
the action of the vortex is no longer large compared to h. 

By extending the analysis beyond the domain of vilidity of 
the thin-string approximation, one can hope to attain a quan- 
titative understanding of how ZN quantum hair turns off the 
Hawking evaporation of the black hole. Work on this 
problem is in progress [25]. 

An important lesson to be learned from the discussion 
above is that the no-hair principle carries less force on the 
Euclidean section of the black hole geometry than on the 
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Lorentzian section. The Lorentzian black hole cannot sup- 
port a stationary electromagnetic field, if the photon mass p 
is nonvanishing. But the Euclidean section can support a 
vortex with nonzero flux. In the limit p -, 0, the flux of the 
vortex spreads out, and the Euclidean vortex solution 
smoothly approaches the Euclidean section of the electrically 
charged black hole. Thus, the p - 0 limit is much less singu- 
lar on the Euclidean section than on the Lorentzian section. 
Correspondingly, the p + 0 limit is less singular in quantum 
physics than in classical physics. 

8. Conclusions 

The main point of this talk has been to demonstrate that a 
black hole can havy Aharonov-Bohm “quantum hair” that 
influences its thermodynamic behavior. We have seen that 
this is the case, at least in a particular field-theoretic model. 
The existence of quantum hair exposes the limitations of the 
no-hair principle in the quantum domain. 

However, I have not directly addressed an important ques- 
tion - Do black holes in Nature have quantum hair? 

I don’t know. But it is appropriate to note, in this con- 
nection, that our current ideas about physics at very short 
distances (particularly superstring theory) suggest that fun- 
damental physics is governed by an enormous group of local 
symmetries.’ Nearly all of these symmetries suffer spon- 
taneous breakdown at or near the Planck scale. One is strongly 
tempted to speculate [5] that this symmetry breakdown gives 
rise to many varieties of quantum hair.+ 

Of course, even if quantum hair of the Aharanov-Bohm 
type does not exist in Nature, black holes may well carry 
quantum hair in a more general sense; that is, in order to give 
a complete quantum-mechanical description of processes 
involving black holes, it may be necessary to ascribe to the 
black hole many non-classical degrees of freedom. Quantum 
hair in this sense seems unavoidable if (contrary to Hawk- 
ing’s bold hypothesis) quantum coherence is actually main- 
tained in processes involving black holes. 

In any event, I expect that further investigation of models 
of quantum hair like that described in this talk will reward us 
with valuable insights into the quantum-mechanical behav- 
iour of black holes, and hence into some of the deep mysteries 
of quantum gravity. 
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Appendix: Quantum hair and axionic hair 

I described in Section 2 how quantum hair can arise if a 
nontrivial local discrete symmetry survives when the Higgs 

* See, for example, [26].  
t It is far from clear, though, that the effects of such quantum hair could be 

reliably studied using semiclassical methods. 

mechanism occurs, and argued in Section 3 that a black hole 
can carry such quantum hair. In this appendix, I compare the 
black hole hair associated with a manifest local symmetry 
and another exotic type of black hole hair that has been 
proposed recently. 

A theory in which a global U(l) symmetry is spon- 
taneously broken contains an exactly massless Goldstone 
boson, the axion, and also a topological defect, the axion 
string. An axionic charge operator can be defined, and an 
object that carries this charge exhibits a nontrivial Aharonov- 
Bohm interaction with an axion string [27]. By means of this 
Aharonov-Bohm effect, axionic charge can in principle be 
detected at long range.$ Thus, axionic charge is a type of hair 
that, according to the argument in Section 3, can be carried 
by a black hole. Black holes with axionic hair were first 
described by Bowick et al. [l 11. 

Suppose that the spontaneous breakdown of the global 
U( 1) symmetry is driven by the condensation of a scalar field 

where 

( P >  = v (A. 2 )  

and 8 is the axion field. Then the axionic charge Q in a volume 
R may be expressed as 

where * denotes the Hodge dual. The Aharonov-Bohm phase 
acquired by an axion string that winds around an object Q is 

exp (2742). 04.4) 

Thus, it is only the non-integer part of Q that can be detected 
at long range by means of the Aharonov-Bohm effect, and 
only the non-integer part of Q that classifies the axionic hair 
on a black hole. 

It is natural to suggest [l 13 that axionic wormholes [28] 
play a role in the evaporation of a black hole with axionic 
charge. However, the axionic charge that flows down a 
wormhole must be an integer [27-291; wormhole processes 
therefore have no effect on the axionic hair. Since the non- 
integer part of Q can be detected at infinite range, it must be 
exactly conserved, in spite of wormholes or other exotica 
[5 ,  8, 301. 

As Bowick et al. [ I l l  noted, it is convenient to describe 
axionic charge using an alternative formalism, related to the 
above by a duality transformation. We may introduce a 
three-form field strength H defined by 

H/2n = v2 * de. (A.5) 

This field strength can be expressed as the curl of a two-form 
potential 

I assume here that the axion mass is exactly zero. Effects of an axion mass 
are discussed in Ref. [8]. 
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and the axionic charge in a volume R can be written as 

1 1 
Q = -j H = -1 B, 

271 n 27c = 
where C is the boundary of R. 

The advantage of this dual formalism is that it allows us 
to discuss axionic hair using the language of classical field 
theory. According to the identity eq. (A.7), an object that 
carries axionic charge must have a long-range B field. Indeed, 
Bowick et al. [l  11 found that a black hole with axionic charge 
could be constructed as a solution to classical field equations. 
In this solution, the field strength H vanishes outside the 
event horizon, but the potential B is nonvanishing, as 
required by eq. (A.7). 

Even though it admits this “classical” description, how- 
ever, axionic hair should be regarded as a type of quantum 
hair. The B field is not a classical local observable; is not even 
gauge invariant.* The long-range B field of a black hole can 
be detected only by means of the Aharonov-Bohm inter- 
action of the black hole with an axion string. This interaction 
is no more classical than is the Aharonov-Bohm interaction 
of a magnetic solenoid with an electrically charged particle, in 
massless electrodynamics. 

In fact, even the Z, quantum hair that results from the 
Higgs mechanism is amenable to this sort of ‘‘classical’’ 
description [25, 311. A duality transformation similar to 
eq. (AS) can be applied to the abelian Higgs model of 
Section 2. Then the three-form field strength is 

H/2n = v 2  * (de + eA)  ( A 4  

where 6’ is the phase of the Higgs field, and the electric charge 
may be expressed as in eq. (A.7).t In this dual version of the 
Higgs model, the Aharonov-Bohm interaction of a charge 
with a string arises from a term in the action of the model that 
resembles a Chern-Simons term; the Aharonov-Bohm phase 
is [25, 321 

exp (& j B A F ) ,  

where F = dA is the electromagnetic field strength. To see 
that eq. (A.9) is just the Aharonov-Bohm phase, consider a 
history such that the world sheet of a cosmic string lies on a 
closed surface E, where the string carries magnetic flux 
CD = 2n/e. Then, if we neglect the thickness of the string, 
eq. (A.9) reduces to 

exp (i Sr B )  = exp (27ciQ), (A. 10) 

where Q is the charge enclosed by the world sheet. In the 
Higgs model of Section 2 ,  this charge Q is an integer multiple 
of 1/N, and eq. (A.lO) is the Z, Aharonov-Bohm phase. 

By means of this dual reformulation of the abelian Higgs 
model, the black hole with 2, quantum hair can be con- 
structed as a solution to “classical” field equations [25, 311. I 
emphasize once again, however, that in spite of the existence 

* The dual formulation respects the local symmetry B + B + dA, where A 
is a one-form. A gauge transformation that is nonsingular at the event 
horizon of a black hole can change the (unmeasurable) integer part of Q, 
but cannot change the (measurable) non-integer part. 

t In a departure from the notation in Section 2, I have taken the charge of 
the Higgs field to be one. 

Physica Scripta T36 

of this “classical” description, the Z, charge is a type of 
quantum hair that escapes detection in the classical limit. 

And the above discussion demonstrates that axionic hair 
may be regarded as a special case (the e --t 0 limit) of the 
more general quantum hair considered in this paper. 
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