Topological Quantum Computation

R. Walter Ogburn and John Preskill

California Institute of Technology, Pasadena, CA 91125, USA
reuben@cco.caltech.edu, preskill@theory.caltech.edu

Abstract. Following a suggestion of A. Kitaev, we explore the connec-
tion between fault-tolerant quantum computation and nonabelian quan-
tum statistics in two spatial dimensions. A suitably designed spin system
can support localized excitations (quasiparticles) that exhibit long-range
nonabelian Aharonov-Bohm interactions. Quantum information encoded
in the charges of the quasiparticles is highly resistant to decoherence, and
can be reliably processed by carrying one quasiparticle around another.
If information is encoded in pairs of quasiparticles, then the Aharonov-
Bohm interactions can be adequate for universal fault-tolerant quantum
computation. This paper was presented at the 1st Nasa International
Conference on Quantum Computing and Quantum Communications,
February 17-20, 1998, and published in Lecture Notes in Computer Sci-
ence 1509: 341-356 (1999).

1 Fault-tolerant quantum computation

Quantum computers appear to be capable, at least in principle, of solving certain
problems far faster than any conceivable classical computer[1]-[3]. In practice,
though, quantum computing technology 1s still in its infancy. While a practical
and useful quantum computer may eventually be constructed, we cannot clearly
envision at present what the hardware of that machine will be like. Nevertheless,
we can be quite confident that any practical quantum computer will incorporate
some type of error correction into its operation. Quantum computers are far
more susceptible to making errors than conventional digital computers [4]-[8],
and some method of controlling and correcting those errors will be needed to
prevent a quantum computer from crashing.

The future prospects for quantum computing received a tremendous boost
from the discovery by Peter Shor[9] and Andrew Steane[l0,11] that quantum
error correction is really possible in principle. But this discovery in itself is
not sufficient to ensure that a noisy quantum computer can perform reliably.
To carry out a quantum error-correction protocol, we must first encode the
quantum information we want to protect, and then repeatedly perform recovery
operations that reverse the errors that accumulate. Since encoding and recovery
are themselves complex quantum computations, errors will inevitably occur while
we perform these operations. Thus, we need to find methods for recovering from
errors that are sufficiently robust to succeed with high reliability even when we
make some errors during the recovery step. Such fault-tolerant recovery methods



were first developed by Shor[12] and Alexei Kitaev[13]; these methods were later
generalized and improved by Shor and David DiVincenzo[14], and by Steane[15].

Furthermore, to operate a quantum computer, we must do more than just
store quantum information; we must process the information. We need to be able
to perform quantum gates, in which two or more encoded qubits come together
and interact with one another. If an error occurs in one qubit, and then that
qubit interacts with another through the operation of a quantum gate, the error
is likely to spread to the second qubit. We must design our gates to minimize
the propagation of error. The central challenge is to construct a universal set
of quantum gates that can act on the encoded data blocks without introduc-
ing an excessive number of errors. Such a scheme for fault-tolerant quantum
computation was first developed by Shor[12] and later generalized by Daniel
Gottesman[16].

Once the elementary gates of our quantum computer are sufficiently reliable,
we can perform fault-tolerant quantum gates on encoded information, along with
fault-tolerant error recovery, to improve the reliability of the device. But for any
fixed quantum code, or even for most infinite classes that contain codes of arbi-
trarily large block size, these procedures will eventually fail if we attempt a very
long computation. However, there is a special class of codes (concatenated codes)
which enable us to perform longer and longer quantum computations reliably,
as we increase the block size at a modest rate[17]-[23]. Invoking concatenated
codes we can establish an accuracy threshold for quantum computation; once
our hardware meets a specified standard of accuracy, quantum error-correcting
codes and fault-tolerant procedures enable us to perform arbitrarily long quan-
tum computations with arbitrarily high reliability.

With the development of fault-tolerant methods, we now know that it is pos-
sible in principle for the operator of a quantum computer to actively intervene
to stabilize the device against errors in a noisy (but not oo noisy) environment.
In the long term, though, fault tolerance might be achieved in practical quantum
computers by a rather different route—with intrinsically fault-tolerant hardware.
Such hardware, designed to be impervious to localized influences, could be oper-
ated relatively carelessly, yet could still store and process quantum information
robustly.

In this paper, we explore a scheme for fault-tolerant hardware envisioned
by Kitaev[24], in which the quantum gates exploit nonabelian Aharonov-Bohm
interactions among distantly separated quasiparticles in a suitably constructed
two-dimensional spin system. Though the laboratory implementation of Kitaev’s
idea may be far in the future, his work offers a new slant on quantum fault
tolerance that shuns the analysis of abstract quantum circuits, in favor of new
physics principles that might be exploited in the reliable processing of quantum
information.

We explain in §2 that charges participating in long-range Aharonov-Bohm
phenomena are impervious to local disturbances, so that quantum information
encoded in such charges is robust. In §3 we argue that nonabelian Aharonov-
Bohm interactions among quasiparticles arise in a class of two-dimensional spin



systems. These interactions are discussed in detail in §4; we see that the exchange
of two quasiparticles can modify the charges carried by the particles; thus par-
ticles with different charges may actually be ndistinguishable. In particular, a
quasiparticle that carries a superposition of two different charges need not deco-
here, because the local environment is indifferent to the value of the charge. In
§5 we sketch our main result: that nonabelian Aharonov-Bohm interactions are
adequate for universal quantum computation, in a model with a sufficiently rich
group-theoretic structure. We conclude in §6 with some tentative speculations
regarding the implications of quantum fault tolerance for fundamental physics.

Recent claims about the potential for the fault-tolerant manipulation of com-
plex quantum states may seem grandiose from the perspective of present-day
technology. Surely, we have far to go before devices are constructed that can,
say, exploit the accuracy threshold for quantum computation[25]. Nevertheless,
we feel strongly that recent work relating to quantum error correction will have
an enduring legacy. Theoretical quantum computation has developed at a spec-
tacular pace over the past three years. If, as appears to be the case, the quantum
classification of computational complexity differs from the classical classification,
then no conceivable classical computer can accurately predict the behavior of
even a modest number of qubits (of order 100). Perhaps, then, relatively small
quantum systems will have far greater potential than we now suspect to surprise,
baffle, and delight us. Yet this potential could never be realized were we unable
to protect such systems from the destructive effects of noise and decoherence.
Thus the discovery of fault-tolerant methods for quantum error recovery and
quantum computation has exceptionally deep implications, both for the future
of experimental physics and for the future of technology. The theoretical ad-
vances have illuminated the path toward a future in which intricate quantum
systems may be persuaded to do our bidding.

2 Aharonov-Bohm Phenomena and Superselection Rules

Topological concepts have a natural place in the discussion of quantum error
correction and fault-tolerant computation. Topology concerns the “global” prop-
erties of an object that remain unchanged when we deform the object locally.
The central idea of quantum error correction is to store and manipulate quan-
tum information in a “global” form that is resistant to local disturbances. A
fault-tolerant gate should be designed to act on this global information, so that
the action it performs on the encoded data remains unchanged even if we deform
the gate slightly; that is, even if the implementation of the gate is not perfect.
In seeking physical implementations of fault-tolerant quantum computation,
then, we ask whether there are known systems in which physical interactions
have a topological character. Indeed, topology is at the essence of the Aharonov-
Bohm effect. If an electron is transported around a perfectly shielded magnetic
solenoid, its wave function acquires a phase ¢’*? where e is the electron charge
and @ is the magnetic flux enclosed by the solenoid. This Aharonov-Bohm phase
is a topological property of the path traversed by the electron — it depends only



on how many times the electron circumnavigates the solenoid, and is unchanged
when the path is smoothly deformed. (See Fig. 1.) We are thus led to contemplate
a realization of quantum computation in which information is encoded in a form
that can be measured and manipulated through Aharonov-Bohm interactions —
topological interactions that are immune to local disturbances.
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Fig.1. A topological interaction. The Aharonov-Bohm phase acquired by an electron
that encircles a flux tube remains unchanged if the electron’s path is slightly deformed.

It 1s useful to reexpress this reasoning in the language of superselection rules.
A superselection rule, as we are using the term here, arises (in a field theory or
spin system defined in an infinite spatial volume) if Hilbert space decomposes
into mutually orthogonal sectors, where each sector is preserved by any local
operation. Perhaps the most familiar example is the charge superselection rule
in quantum electrodynamics. An electric charge has an infinite range electric
field. Therefore no local action can create or destroy a charge, for to destroy a
charge we must also destroy the electric field lines extending to infinity, and no
local procedure can accomplish this task.

The Aharonov-Bohm interaction is also an infinite range effect; the electron
acquires an Aharonov-Bohm phase upon circling the solenoid no matter what its
distance from the solenoid. So we may infer that no local operation can destroy
a charge that participates in Aharonov-Bohm phenomena. If we consider two
objects carrying such charges, widely separated and well isolated from other
charged objects, then any process that changes the charge on either object would
have to act coherently in the whole region containing the two charges. Thus, the
charges are quite robust in the presence of localized disturbances; we can strike
the particle with a hammer or otherwise abuse it without modifying the charges
that it carries.



Following Kitaev[24], we may envision a topological quantum computer, a de-
vice in which quantum information i1s encoded in the quantum numbers carried
by quasiparticles that reside on a two—dimensional surface and have long-range
Aharonov-Bohm interactions with one another. At zero temperature, an acciden-
tal exchange of quantum numbers between quasiparticles (an error) arises only
due to quantum tunneling phenomena involving the virtual exchange of charged
objects. The amplitude for such processes is of the order of e~ where m is
the mass of the lightest charged object (in natural units), and L is the distance
between the two quasiparticles. If the quasiparticles are kept far apart, the prob-
ability of an error afflicting the encoded information will be extremely low. At
finite temperature 7', there is an additional source of error, because an uncon-
trolled plasma of charged particles will inevitably be present, with a density
proportional to the Boltzman factor e~/ where A is the mass gap (not neces-
sarily equal to the “curvature mass” m). Sometimes one of the plasma particles
will slip unnoticed between two of our data-carrying particles, resulting in an
exchange of charge and hence an error. To achieve an acceptably low error rate,
then, we would need to keep the temperature well below the gap A (or else we
would have to monitor the thermal plasma very faithfully).

3 The Fractional Quantum Hall Effect and Beyond

If our device is to be capable of performing interesting computations, the Aharonov-
Bohm phenomena that it employs must be nonabelian. Only then will we be
able to build up complex unitary transformations by performing many particle
exchanges in succession. Such nonabelian Aharonov-Bohm effects can arise in
systems with nonabelian gauge fields. Nature has been kind enough to provide
us with some fundamental nonabelian gauge fields, but unfortunately not very
many, and none of these seem to be suited for practical quantum computation.
To realize Kitaev’s vision, then, we must hope that nonabelian Aharonov-Bohm
effects can arise as complex collective phenomena in (two-dimensional electron
or spin) systems that have only short-range fundamental interactions.

In fact, one of the most remarkable discoveries of recent decades has been that
infinite range Aharonov-Bohm phenomena can arise in such systems, as revealed
by the observation of the fractional quantum Hall effect. The electrons in quan-
tum Hall systems are so highly frustrated that the ground state is an extremely
entangled state with strong quantum correlations extending out over large dis-
tances. Hence, when one quasiparticle is transported around another, even when
the quasiparticles are widely separated, the many electron wave function acquires
a nontrivial Berry phase (such as 62”/3). This Berry phase 1s indistinguishable
in all its observable effects from an Aharonov-Bohm phase arising from a funda-
mental gauge field, and its experimental consequences are spectacular[26].

The Berry phases observed in quantum Hall systems are abelian (although
there are some strong indications that nonabelian Berry phases can occur under
the right conditions[27,28]), and so are not very interesting from the viewpoint
of quantum computation. But Kitaev[24] has described a family of simple spin



systems with local interactions in which the existence of quasiparticles with non-
abelian Berry phases can be demonstrated. (The Hamiltonian of the system so
frustrates the spins that the ground state is a highly entangled state with infinite
range quantum correlations.) These models are sufficiently simple (although un-
fortunately they require four-body interactions), that one can imagine a designer
material that can be reasonably well-described by one of Kitaev’s models. The
crucial topological properties of the model are relatively insensitive to the precise
microscopic details, so the task of the fabricator who “trims” the material may
not be overly demanding. If furthermore it were possible to control the trans-
port of individual quasiparticles (perhaps with a suitable magnetic tweezers),
then the system could be operated as a fault-tolerant quantum computer.

Fig. 2. A Kitaev spin model. Spins reside on the lattice links. The four spins that meet
at a site or share a plaquette are coupled.

To construct his models, Kitaev considers a square lattice, with spins re-
siding on each lattice link. The Hamiltonian is expressed as a sum of mutually
commuting four-body operators, one for each site and one for each plaquette
of the lattice. (See Fig. 2.) Because the terms are mutually commuting, it is
simple to diagonalize the Hamiltonian by diagonalizing each term separately.
The operators on sites resemble local gauge symmetries (acting independently
at each site), and a state that minimizes these terms is invariant under the local
symmetry, like the physical states that obey Gauss’s law in a gauge theory. The
operators on plaquettes are like “magnetic flux” operators in a gauge theory,
and these terms are minimized when the magnetic flux vanishes everywhere.
The excitation spectrum includes states in which Gauss’s law is violated at iso-
lated sites — these points are “electrically charged” quasiparticles — and states
in which the magnetic flux is nonvanishing at i1solated plaquettes — these are



magnetic fluxon quasiparticles. The quantum entanglement of the ground state
is such that a nontrivial Berry phase is associated with the transport of a charge
around a flux — this phase is identical to the Aharonov-Bohm phase in the
analog gauge theory.

These Aharonov-Bohm phenomena are stable even as we deform the Hamil-
tonian of the theory. Indeed, if the deformation is sufficiently small, we can study
its effects using perturbation theory. But as long as the perturbations are local in
space, topological effects are robust, since perturbation theory is just a sum over
localized influences. Whatever destroys the long-range topological interactions
must be nonperturbative in the deformation of the theory.

Two types of nonperturbative effects can be anticipated[29]. The ground
state of the theory might become a “flux condensate” with an indefinite number
of magnetic excitations. In this event, there would be a long-range attractive
interaction between charged particles and their antiparticles. It would be impos-
sible to separate charges, and there would be no long-range effects. In a gauge
theory, this phenomenon would be called electric confinement. Alternatively, a
condensate of electric quasiparticles might appear in the ground state. Then the
magnetic excitations would be confined, and again the long-range Aharonov-
Bohm effects would be destroyed. In a gauge theory, we would call this the
Higgs phenomenon (or magnetic confinement).

Thus, as we deform Kitaev’s Hamiltonian, we can anticipate that a phase
boundary will eventually be encountered, beyond which either electric confine-
ment or the Higgs phenomenon will occur. The size of the region enclosed by this
boundary will determine how precisely a material will need to be fabricated in
order to behave as Kitaev specifies. A particularly urgent question for the mate-
rial designer is whether cleverly chosen two-body interactions might so frustrate
a spin system as to produce a highly entangled ground state and nonabelian
Aharonov-Bohm interactions among the quasiparticle excitations.

The fractional quantum Hall effect, and Kitaev’s models, speak a memo-
rable lesson. We find gauge phenomena emerging as collective effects in systems
with only short range interactions. It is intriguing to speculate that the gauge
symmetries known in Nature could have a similar origin.

4 Topological Interactions

As we have noted, in Kitaev’s spin models, there are two types of charges that
can be carried by localized quasiparticles, which we may call “electric” and
“magnetic” charges. In the simplest type of model, the “magnetic flux” carried
by a particle can be labeled by an element of a finite group G, and “electric
charges” are labeled by irreducible representations' of GG. If a charged particle in
the irreducible representation D), whose quantum numbers are encoded in an

! There can also be “dyons” that carry both types of charge, and the classification of
the charge carried by a dyon is somewhat subtle, but we will not need to discuss
explicitly the properties of the dyons.



internal wavefunction |1/)(")), is carried around a flux labeled by group element
u € G, then the wavefunction is modified according to

[9) — DY (w)|w) . (1)

Exploiting this interaction, we can measure a magnetic flux by scattering a
suitable charged particle off of the flux[30]. For example, we could construct
a Mach-Zender flux interferometer as shown in Fig. 3 that is sensitive to the
relative phase acquired by the charged particle paths that pass to the left or
right of the flux. If we balance the interferometer properly, we can distinguish
between, say, two flux values uy,us € G a uy flux will be detected emerging
from one arm of the interferometer, and a us flux from the other arm. Of course,
the interferometer we build will not be flawless, but the flux measurement can
nevertheless be fault-tolerant — if we have many charged projectiles and perform
the measurement repeatedly, we can determine the flux with very high statistical
confidence.

N

Fig.3. A Mach-Zender interferometer for flux measurement, shown schematically. The

“charge”

flux to be measured is inserted inside. The test charge emerges from one arm if the
flux has value w1, the other arm if the flux has value us.

If the two fluxes u; and uy belong to the same conjugacy class in GG, then there
i1s a symmetry relating the two fluxons, so that all local physics is indifferent to
the value of the flux (see below). Therefore, a coherent superposition of fluxes

aluy) + blus) (2)

will not readily decohere due to localized interactions with the environment. But
the flux interferometer (operated repeatedly) will project the fluxon onto either
of the flux eigenstates |u;) (with probability |a|?) or |us) (with probability |b|?).
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Fig.4. The flux exchange interaction. The flux labeled w; is carried from its original
position (shaded) to its new position (unshaded), and then remeasured. The charged
particle path shown that encircles the original position of the flux is topologically
equivalent to a path that encircles the new position; hence the value of the flux changes
from u; to uj = u;luluQ.

Now imagine that two fluxons have been carefully calibrated, so that one is
known to carry the flux u; and the other the flux us. And suppose that the
two vortices are carefully “exchanged” by carrying the first around the second
as shown in Fig. 4, and that we subsequently remeasure the fluxes. Carrying a
charged particle around the fluxon on the right, after the exchange, 1s topolog-
ically equivalent to carrying the charged particle around first the right fluxon,
then the left fluxon, and finally the right fluxon in the opposite direction, before
the exchange. We infer that the exchange modifies the quantum numbers of the
fluxons according to

|ur)uz) — |us)|uz turus) (3)

a nontrivial interaction if the two fluxes fail to commute[31]. Thus, noncommut-
ing fluxes have interesting Aharonov-Bohm interactions of their own, even in the
absence of any electric charges. Because carrying one flux around another can
conjugate the value of the flux, two fluxons carrying conjugate fluxes must be
regarded as indistinguishable particles[32]. An exchange of two such objects can
modify their internal quantum numbers; we will refer to them as nonabelions[33],
indistinguishable particles in two dimensions that obey an exotic nonabelian
variant of quantum statistics.

We will use the exchange interaction Eq. (3) as a fundamental logical oper-
ation in our Aharonov-Bohm quantum computer. However, it will actually be
convenient to encode qubits in pairs of fluxons, where the total flux of the pair 1s
trivial[24]. That is, we will consider fluxon-antifluxon pairs of the form |u, u=1),
but where the flux and antiflux are kept far enough apart from one another
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Fig.5. The “pull-through” interaction. One flux pair is pulled through another. The
outside flux is unmodified, but the inside flux is conjugated by the outside flux.

that an inadvertent exchange of quantum numbers between them is unlikely. To
perform logic, we may pull one pair through another as shown in Fig. 5. Since
the total flux that passes through the middle of the outside pair is trivial, this
pair is not modified, but the inside fluxes are conjugated by the outside flux:

ur, up Y ug, uy 'y — Jug, uy g tuyug, uy tuy ) (4)

an operation that i1s evidently isomorphic to the effect of the exchange of single
fluxes described by Eq. (3). Using pairs instead of single fluxons has two ad-
vantages. First, since each pair has trivial total flux, the pairs do not interact
unless one 1s pulled through another; therefore, we can easily shunt pairs around
the device without inducing any unwanted interactions with distant pairs. Sec-
ond, and more important, pairs can carry charges even if each member of the
pair carries no charge[34,35]. The charge of a pair can be measured, and this
charge-measurement operation will be a crucial ingredient in the construction
of a universal set of quantum gates. The operation Eq. (4) can be regarded as
a classical logic gate; it takes flux eigenstates to flux eigenstates. To perform
interesting quantum computations, we will need to be able to prepare coherent
superpositions of flux eigenstates. This is what we can accomplish by measuring
the charge of a pair.

Suppose that up and u; € G are related by w1 = v~ lugv for some v € G. Then
if we think of the flux eigenstates |ug, uy ') and |uy, u7!) as computational basis
states, the effect of pulling either pair through a |v,v=!) pair can be interpreted
as a NOT (or o) gate:

Juo, ug ') < fur,uy?) ()
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Fig.6. The NOT gate. Pulling a computational flux pair through a NOT pair flips the
value of the encoded bit.
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Fig.7. A Mach-Zender interferometer for charge measurement, shown schematically.
The flux pair whose charge is to be measured is inserted inside. If the test NOT flux
emerges from one arm, the |+) charge state has been prepared; if it emerges from the
other arm, |—) has been prepared.



(see Fig. 6). But suppose we wish to prepare one of the states

) = % (o, ug)  Jur, up)) (6)

We can project a coherent superposition of |ug, uy ') and |uy, u] ') onto the {|+)}
basis by scattering a |v) fluxon off the pair, or in other words by operating a
charge interferometer, as in Fig. 7. When the |v) fluxon navigates around the
pair, it acquires a trivial Aharonov-Bohm phase if the pair is in the state |+)
and the nontrivial phase —1 if the pair is in the state |—). If the interferometer
is properly balanced, then, the |v) projectile will be detected emerging from one
arm of the interferometer if the pair is |4}, and the other arm if the pair is |—).
This is an example of charge measurement. Though the interferometer will not
be perfect, charge measurement (like flux measurement) can be fault-tolerant, if
we repeat the measurement enough times.

5 Universal Topological Computation

Working with fluxon pairs as computational basis states, we have seen how to
perform the exchange (or “pull through”) operation Eq. (4), how to measure
flux (using previously calibrated charges), and how to measure charge (using
previously calibrated fluxes). We will also suppose that we are able to produce a
large supply of vortex pairs. Local processes produce pairs that carry no charge
or flux; a charge-zero pair with trivial flux has the form (up to normalization)

|charge zero) = Z lu, u™) (7)

where the sum ranges over a complete conjugacy class of G. Because this state
is left invariant when conjugated by any element of (¢, it has trivial Aharonov-
Bohm interactions with any flux, and so carries no detectable charge. After
producing such a pair, we can perform flux measurement to project out one
of the flux eigenstate pairs |u, u™1). Performing many such measurements on
many pairs, we can assemble a large reservoir of calibrated flux pairs that can
be withdrawn as needed during the course of a computation.

But is our quantum computer universal — can we closely approximate any
desired unitary transformation? To address this 1ssue, we appeal to a theorem
proved by Gottesman[16]. Suppose that we can perform any classical reversible
operation; that is, any unitary transformation on n qubits that merely permutes
the 2" computational basis states. Then to achieve universal quantum computa-
tion, it is sufficient to be able to perform a few simple operations on individual
qubits: the single-qubit gate o, , and measurement of the single-qubit observables
0y, 0y, and o,. In other words (if we envision the qubits as spin—% objects), once
we have a universal classical gate at our disposal, we can build a universal quan-



tum computer if we are able to rotate a spin by 180° about the z axis,? and can
measure the spin along the z, y, and z axes.

In fact, there are groups G such that the operation Eq. (4) is sufficient for
universal classical computation. The three-bit Toffoli gate, with action

Toffoli : |a, b, ¢} — |a, b, c® ab) (8)

on a,b,c € {0,1}, is a universal classical gate. We have found that a Toffoli gate
can be constructed from Eq. (4) if G = As, the group of even permutations on
five objects. We may, for example, choose computational basis states with

uo = (125) , wuy = (234) ; (9)

that 1s, we choose our computational fluxes to be three-cycles with one object
in common. Then a Toffoli gate can be constructed from a total of 16 elemen-
tary “pull-through” operations; six ancilla pairs are also used to catalyze this
reaction. No Toffoli gate was found in any group smaller than As.3 Since Aj is
also the smallest of the finite nonsolvable groups, it is tempting to conjecture
that nonsolvablility is a necessary condition for universal classical computation
generated by conjugation.*

We have already remarked that an ¢, gate can be realized by pulling a com-
putational vortex pair through the pair with flux v such that u; = v~ 'wugv; here
we choose v = (14)(35). It turns out that the o, gate can be constructed with
six pull-through steps and four ancilla pairs. Measuring o, 1s the same as mea-
suring flux, and we have already seen that o, measurement can be achieved by
measuring the charge of a pair, specifically, by using a v projectile in a charge
interferometer. It only remains to verify that we can measure o,. Though o,
measurement cannot be carried out exactly in this scheme, it turns out that
a controlled-o, gate can be constructed from 31 pull-through steps, and using
7 ancilla pairs. Appealing to another trick invented by Kitaev[37], we can use
the controlled-o, gate repeatedly to carry out o,-measurement to any desired
accuracy.” Therefore, we have constructed a universal gate set using only the
Aharonov-Bohm interactions of fluxes and charges; we have a fault-tolerant uni-
versal quantum computer.

Unfortunately, the spin model on which this construction is based is not so
simple. Since the group As has order 60, the Kitaev spin model that realizes

this scenario has a 60-component spin residing at each lattice link (1) One hopes
? Since o, is a classical gate, and i0, = 0.0, it follows that we can perform 180°
rotations about each of the z, y and z axes.

Kitaev had reported earlier that universal classical computation is possible for G =
Ss.

A finite group is nonsolvableif it has a nontrivial subgroup whose commutator sub-
group is itself. Barrington[36] also found evidence for a separation in the computa-
tional complexity of group multiplication for solvable vs. nonsolvable groups.
Actually, what we really construct is a controlled-w (ic,) gate where w = e2ﬂi/3,
which is also adequate for measurement of o,.



that a simpler implementation of universal Aharonov-Bohm computation will be
found.

The fabrication of materials that emulate Kitaev’s spin systems may lie far
in the future. And even when such materials are available, there will be further
challenges to the machine designer, such as finding a reliable way to shepherd
individual quasiparticles along prescribed trajectories. In the nearer term, it is
interesting to consider whether nontrivial quantum information processing might
be feasible in existing quantum Hall systems. Furthermore, even if we are unable
to operate an actual spin system as a quantum computer, a quantum cellular
automaton that simulates the spin system may provide a promising paradigm
for fault-tolerant quantum computation.

6 Is Nature Fault Tolerant?

The discovery of quantum error correction and fault tolerance has so altered our
thinking about quantum information that it is appropriate to wonder about the
potential implications for fundamental physics. And in fact, a fundamental issue
pertaining to loss of quantum information has puzzled the physics community
for over twenty years.

In 1975, Stephen Hawking[38] argued that quantum information is unavoid-
ably lost when a black hole forms and then subsequently evaporates completely.
The essence of the argument is very simple: because of the highly distorted
causal structure of the black hole spacetime, the emitted radiation 1s actually
on the same time slice as the collapsing body that disappeared behind the event
horizon. If the quantum information that is initially encoded in the collapsing
body is eventually to re-emerge encoded in the microstate of the emitted infor-
mation, then that information must be in two places at once. In other words,
the quantum information must be cloned, a known impossibility under the usual
assumptions of quantum theory[39,40]. Hawking concludes that not all physical
processes can be governed by unitary time evolution; the laws of quantum theory
need revision.

This argument is persuasive, but many physicists are very distrustful of the
conclusion. Perhaps one reason for the skepticism is that it seems odd for Na-
ture to tolerate just a little bit of information loss[41]. If processes involving
black holes can destroy information, then one expects that information loss is
unsuppressed at the Planck length scale (Gh/c®)Y/? ~ 10733 ¢m, a scale where
virtual black holes continually arise as quantum fluctuations. It becomes hard to
understand why quantum information can be so readily destroyed at the Planck
scale, yet is so well preserved at the much longer distance scales that we have
been able to explore experimentally — violations of quantum mechanics, after
all, have never been observed.

Our newly acquired understanding of fault—tolerant quantum computation
provides us with a fresh and potentially fruitful way to think about this problem.
In Kitaev’s spin models, we might imagine that localized processes that destroy
quantum information are quite common. Yet were we to follow the evolution of



the system with coarser resolution, tracking only the information encoded in the
charges of distantly separated quasiparticles, we would observe unitary evolution
to remarkable accuracy; we would detect no glimmer of the turmoil beneath the
surface.®

Likewise, it is tempting to speculate that Nature has woven fault tolerance
into her design, shielding the quantum noise at the Planck scale from our view.
The discovery that quantum systems can be stabilized through suitable coding
methods prompts us to ask the question: Is Nature fault tolerant? If so, then
quantum mechanics may reign (to excellent accuracy) at intermediate length
scales, but falter both at the Planck scale (where “errors” are common) and at
macroscopic scales (where decoherence is rapid).
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