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We propose and analyze an interface between a topological qubit and a superconducting flux qubit. In

our scheme, the interaction between Majorana fermions in a topological insulator is coherently controlled

by a superconducting phase that depends on the quantum state of the flux qubit. A controlled-phase gate,

achieved by pulsing this interaction on and off, can transfer quantum information between the topological

qubit and the superconducting qubit.
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Introduction.—Topologically ordered systems are in-
trinsically robust against local sources of decoherence,
and therefore hold promise for quantum information pro-
cessing. There have been many intriguing proposals for
topological qubits, using spin lattice systems [1], pþ ip
superconductors [2], and fractional quantum Hall states
with filling factor 5=2 [3]. The recently discovered topo-
logical insulators [4] can also support topologically pro-
tected qubits [5]. Meanwhile, conventional systems for
quantum information processing (e.g., ions, spins, photon
polarizations, superconducting qubits) are steadily pro-
gressing; recent developments include high fidelity
operations using ions [6] and superconducting qubits
[7], long-distance entanglement generation using single
photons [8,9], and extremely long coherence times using
nuclear spins [10].

Interfaces between topological and conventional quan-
tum systems have also been considered recently [11,12].
Hybrid systems [13,14] may allow us to combine the
advantages of conventional qubits (high fidelity readout,
universal gates, distributed quantum communication
and computation) with those of topological qubits (robust
quantum storage, protected gates). In this Letter, we pro-
pose and analyze an interface between a topological qubit
based on Majorana fermions (MFs) at the surface of a
topological insulator (TI) [5] and a conventional super-
conducting (SC) flux qubit based on a Josephson junction
device [15]. The flux qubit has two basis states, for which
the SC phase of a particular SC island has two possible
values. In our scheme, this SC phase coherently controls
the interaction between two MFs on the surface of the TI.
This coupling between the MFs and the flux qubit provides
a coherent interface between a topological and conven-
tional quantum system, enabling exchange of quantum
information between the two systems.

Topological qubit.—The topological qubit can be en-
coded with four Majorana fermion operators f�igi¼1;2;3;4,

which satisfy the Majorana property �y
i ¼ �i and fermi-

onic anticommutation relation f�i; �jg ¼ �ij. A Dirac

fermion operator can be constructed from a pair of MFs

�y
ij ¼ ð�i � i�jÞ=

ffiffiffi
2

p
, defining a two dimensional Hilbert

space labeled by nij ¼ �y
ij�ij ¼ 0; 1. The two basis

states for the topological qubit, each with an even
number of Dirac fermions, are j0itopo ¼ j012034i and

j1itopo ¼ j112134i.
The MFs can be created on the surface of a TI patterned

with s-wave superconductors [5]. Because of the proximity
effect [16], Cooper pairs can tunnel into the TI; hence the
effective Hamiltonian describing the surface includes a

pairing term, which has the form V ¼ �0e
i�c y

" c
y
# þ

H:c: (where c y
" , c y

# are electron operators), assuming

that the chemical potential is close to the Dirac point
[17]. Here � is the SC phase of the island. Each MF is
localized at an SC vortex that is created by an SC trijunc-
tion [i.e., three separated SC islands meeting at a point,
see Fig. 1(a)]. The MFs can interact via a superconductor-
TI-superconductor (STIS) wire [Fig. 1(a)] that separates

FIG. 1 (color online). On the surface of the TI, patterned SC
islands can form (a) STIS quantum wire, (b) flux qubit, and (c) a
hybrid system of topological and flux qubits. (a) Two MFs (red
dots) are localized at two SC trijunctions, connected by an STIS
quantum wire (dashed blue line). The coupling between the MFs
is controlled by the SC phases �d ¼ " and �u ¼ ��. (b) A flux
qubit consists of four JJs connecting four SC islands (a, b, c, d)
in series, enclosing an external magnetic flux f�0. (c) The
hybrid system consists of an STIS wire and a flux qubit.
The STIS wire (between islands d and u) couples the MFs,
with coupling strength controlled by the flux qubit. The SC
phase �c can be tuned by a phase controller (not shown), and
�d ¼ �c � ��4 with the choice of � sign depending on the state

of the flux qubit.

PRL 106, 130504 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
1 APRIL 2011

0031-9007=11=106(13)=130504(4) 130504-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.130504


the SC islands d and u with �d ¼ " and �u ¼ ��,
respectively. For a narrow STIS wire with width W �
vF=�0, the effective Hamiltonian is

HSTIS ¼ �ivF�
x@x þ �"�

z; (1)

where vF is the effective Fermi velocity, �" ¼
�0 cosð�d ��uÞ=2 ¼ ��0 sin"=2, and �x;z are Pauli
matrices acting on the wire’s two zero-energy modes [5].
As shown in Fig. 1(a), the STIS wire connects two local-
ized MFs (indicated by two red dots at the trijunctions)
separated by distance L; these are two of the four MFs
comprising the topological qubit. The coupling between
the MFs (denoted as �1 and �2) via the STIS wire can be
characterized by the Hamiltonian ~HMF

12 ¼ iEð"Þ�1�2=2,
with an induced energy splitting Eð"Þ depending on the
SC phase ". The effective Hamiltonian for the topological
qubit is

HMF
12 ¼ �Eð"Þ

2
Ztopo; (2)

where Ztopo ¼ ðj0ih0j � j1ih1jÞtopo.
In Fig. 2(a), we plot Eð"Þ as a function of a dimension-

less parameter �" � �0L
vF

sin"2 . For �" � 1 and 0< "<

�=2 [5], the energy splitting Eð"Þ � 2j�"je��" � 0 is
negligibly small for localized MFs at the end of the

wire, as the wave functions are proportional to e��"x=L

and e��"ðL�xÞ=L. On the other hand, for �" & 1, the two
MFs are delocalized and Eð"Þ becomes sensitive to ". We
emphasize that Eð"Þ is a nonlinear function of " [18],
which enables us to switch the coupling on and off.

Flux qubit.—The SC island d can also be part of an SC
flux qubit [Fig. 1(b)], with �d ¼ " ¼ "0 or "1 depending

on whether the state of the flux qubit is j0iflux or j1iflux as
shown in Figs. 2(b) and 2(c). Therefore, the Hamiltonian
HMF

12 couples the flux qubit and the topological qubit.
Assuming a small phase separation �" � "0 � "1 �
�=2, we can switch off the coupling HMF

12 by tuning "0;1

to satisfy vF=L�0 � "0;1 <�=2 [5], so that the MFs
are localized and uncoupled with negligible energy
splitting Eð"0Þ � Eð"1Þ � 0. We can also switch on the
coupling HMF

12 by adiabatically ramping to the parameter
regime "0;1 & vF=L�0 to induce a non-negligible
jEð"0Þ � Eð"1Þj ��0�". Because flux qubit designs
with three Josephson junctions (JJs) [15,19] are not ame-
nable to achieving a small phase separation �" � �=2
[18], we are motivated to modify the design of the flux
qubit by adding more JJs.
As shown in Fig. 1(b), our proposed flux qubit consists of a

loop of four Josephson junctions in series that encloses an
applied magnetic flux f�0 (f � 1=2 and �0 ¼ h=2e
is the SC flux quantum). The Hamiltonian for the flux qubit is

Hflux ¼ T þU; (3)

with Josephson potential energy U ¼ P
i¼1;2;3;4EJ;ið1�

cos�iÞ, and capacitive charging energy T ¼
1
2

P
i¼1;2;3;4CiV

2
i . For the ith JJ,EJ;i is the Josephson coupling

energy, �i is the gauge-invariant phase difference, Ci is the
capacitance, and Vi is the voltage across the junction [15,19].
In addition, there are relations satisfied by the phase accumu-
lation around the loop

P
i�i þ 2f� � 0ðmod2�Þ and the

voltage across each junction Vi ¼ ð�0

2�Þ _�i [16]. The parame-

ters are chosen as follows: the first two JJs have equal
Josephson coupling energy EJ;1 ¼ EJ;2 ¼ EJ, the third JJ

has EJ;3 ¼ �EJ with 0:5<�< 1, and the fourth JJ

hasEJ;4 ¼ �EJ with� � 1. For JJs with the same thickness

but different junction area fAig, EJ;i / Ai and Ci / Ai. The

charging energies can be defined as EC;1 ¼ EC;2 ¼ EC ¼
e2

2C1
, EC;3 ¼ ��1EC and EC;4 ¼ ��1EC. For these parame-

ters and f � 1=2, the system has two stable states with
persistent circulating current of opposite sign. We identify
the flux qubit basis states with the two potential minima
j0iflux ¼ jf��i gi and j1iflux ¼ jf���i gi (modulo 2�), as illus-
trated in Figs. 2(b) and 2(c).
When � ! 1, we may neglect the fourth junction and

this system reduces to the previous flux qubit design with
three JJs [15,19]. For � � 1, there is a small phase differ-

ence across the fourth JJ [18], �4 ¼ ���4 � �
ffiffiffiffiffiffiffiffiffiffiffi
4�2�1

p
2�

1
� ,

where the choice of� sign depends on the direction of the
circulating current. We may write �4 ¼ Zflux�

�
4, with

Zflux ¼ ðj0ih0j � j1ih1jÞflux. The fourth JJ connects SC
islands c and d, and if we fix �c relative to �u with a
phase controller [20], then �d will be "0 ¼ �c þ ��4 or
"1 ¼ �c � ��4 depending on the state of the flux qubit. The
separation

�" �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 � 1

p

�

1

�
(4)

FIG. 2 (color online). (a) The energy splitting Eð"Þ (in units of

�E ¼ vF=L) as a function of �" ¼ �0L
vF

sin"=2. (b) A contour

plot of potential energy U as a function of f�1; �2; �4g with
�3 ¼ �� �1 � �2 � �4. There are two potential minima asso-
ciated with flux qubit states j0i and j1i. (c) A contour plot ofU as
a function of f�1; �4g with �1 ¼ �2 and �3 ¼ �� 2�1 � �4.
(d) Marginal probability distributions of �4 associated with states
j0i (blue solid line) and j1i (red dashed line). The parameters are
EJ=EC ¼ 80 and fEJ;i=EJgi¼1;2;3;4 ¼ f1; 1; � ¼ 0:8; � ¼ 10g.
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between the two possible values of �d becomes small, as
we desired, when � is large.

Aside from this small phase separation, there are also
quantum fluctuations in �4 due to the finite capacitance.
Near its minimum at �f��i g, the potential energy is ap-
proximately quadratic; therefore, for � � 1, the dynamics
of �4 can be well described by a harmonic oscillator (HO)
Hamiltonian

HHO ¼ p2
�4

2M4

þ EJ;4

2
ð�4 � Zflux�

�
4Þ2; (5)

where the effective mass is M4 ¼ 1
8EC;4

and the canonical

momentum p�4 satisfies ½�4; p�4	 ¼ i (with @ � 1). We

may rewrite HHO ¼ ðayaþ 1=2Þ! and �4 ¼ Zflux�
�
4 þ

	ðay þ aÞ= ffiffiffi
2

p
, where the oscillator frequency is ! ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8EJEC

p
and the magnitude of quantum fluctuations is

	 ¼ ð8EC

EJ
Þ1=4��1=2. Figure 2(d) shows the probability

distribution functions p0=1ð�4Þ � 1
	
ffiffiffi
�

p e�ð�4
��
4
Þ2=	2 associ-

ated with j0if and j1if. The magnitude of the quantum

fluctuations 	 is comparable to the phase separation �";

indeed 	 / ��1=2 may even dominate the phase separation
�" / ��1 for large � (Fig. 3). [21] Therefore, we should
consider both the phase separation and the quantum
fluctuations.

Hybrid system.—The Hamiltonian for the hybrid system
of topological and flux qubits [Fig. 1(c)] is:

H ¼ HHO þHMF
12 ¼ ðayaþ 1=2Þ!� 1

2
Eð"ÞZtopo (6)

where " ¼ �c þ �4 ¼ �c þ Zflux�
�
4 þ 	ðay þ aÞ= ffiffiffi

2
p

. In
both flux qubit basis states, the oscillator is in its ground
state with hayai ¼ 0. To first order in the small parameter

� � 	
!

dEð�Þ
d� j�¼�c

� 1, the Hamiltonian becomes

H ¼ HHO � 1

2
ðhE0ij0ih0j

þ hE1ij1ih1jÞflux � Ztopo þOð�2Þ
where hE0=1i �

R
d�4Eð�c þ �4Þp0=1ð�4Þ.

Up to a single-qubit rotation, the effective Hamiltonian
coupling the flux and topological qubits is

HI ¼ g

4
ZfluxZtopo (7)

with coupling strength g¼hE1i�hE0i�½Eð"1Þ�Eð"0Þ	þ
1
4½E00ð"1Þ�E00ð"0Þ		2þOð	3Þ. The first term arises from

the phase separation and the second term from the quantum
fluctuations; corrections of higher order in 	 � 1 are
small.
Because the energy splitting function Eð"Þ is highly

nonlinear, we may tune �c to �off such that vF=L�0 �
"0;1 ¼ �off ��"=2<�=2 and switch off the coupling

g � �0�"e
�j�off j�0L=2vF � 0. On the other hand, we may

adiabatically ramp �c to �on & vF=L�0, which effec-
tively switches on the coupling g � �0�". By adiabati-
cally changing �c from �off ! �on ! �off withR
gðtÞdt ¼ �, we can implement the controlled-phase

(CPHASEt;f) gate between the topological (t) and flux (f)

qubits. With controlled-NOT gates CNOTt;f and

Hadamard gates Hadf, we can achieve CNOTt;f ¼ Hadf�
CPHASEt;f � Hadf, which flips the flux qubit conditioned

on j1it and can be used for quantum nondemolition mea-
surement of the topological qubit [11,22]. Furthermore,
with Hadamard gates Hadt (implemented by exchanging
two MFs [3,5]), we can achieve the swap operation
SWAPt;f ¼ ðHadt � Hadf � CPHASEt;fÞ3. Finally, with

CPHASEt;f, Hadt, and single-qubit rotations Uf, we can

achieve arbitrary unitary transformations for the two-
qubit hybrid system of flux and topological qubits
[13,14].
Imperfections.—There are four relevant imperfections

for the coupled system of flux and topological qubits
[23]. The first imperfection is related to the tunneling
between j0iflux and j1iflux of the flux qubit, with tunneling

rate t�! expð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ=EC

p Þ. The coupling between flux
and topological qubits should be strong enough,
g � t, to suppress the undesired tunneling probability

tunnel � ðt=gÞ2.
The next imperfection comes from undesired excitations

of the oscillators. According to the Hamiltonian H for the
hybrid system, the oscillators may be excited via interac-

tion Eð�c þ �4Þ ¼ Eð�c þ Zflux�
�
4Þ þ dE

d" 	
ây
1
þâ1ffiffi
2

p þ    .
The excitation probability can be estimated as 
excite �
ð 	
2!

dE
d"Þ2. Since j dEd" j & �0, 	 � ð8EC

EJ
Þ1=4��1=2, and

! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC

p
, we estimate 
excite &

1
20� ð�0

EJ
Þ2

ffiffiffiffiffi
EJ

EC

q
.

The third imperfection is due to the finite length of the
STIS wire, which limits the fidelity for the topological
qubit itself. When we switch off the coupling between
the flux and topological qubits by having �c ¼ �off and
��off

� 1 for the STIS wire, there is an exponentially

small energy splitting E��0e
���off .

The last relevant imperfection is associated with the
excitation modes of the quantum wire, with excitation
energy E0 � vF=L [5]. Occupation of these modes can
potentially modify the phase separation of the flux qubit.
Therefore, we need sufficiently low temperature to
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FIG. 3 (color online). Comparison between the phase separa-
tion �" / ��1 (black solid line) and the magnitude of
quantum fluctuations 	 / ��1=2 (purple dashed line), assuming
EJ=EC ¼ 80.

PRL 106, 130504 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
1 APRIL 2011

130504-3



exponentially suppress the occupation of these modes by

the factor e�E0=kBT .
Physical parameters.—We may choose the following

design parameters for the flux qubit: � ¼ 0:8, � ¼ 10,
EJ=EC ¼ 80, and EJ ¼ 200ð2�Þ GHz. Both phase separa-
tion and quantum fluctuations depend sensitively on � (see
Fig. 3), with�" � 0:16 and 	 � 0:18. Meanwhile, the flux
qubit has plasma oscillation frequency ! � 60ð2�Þ GHz,
energy barrier �U � 0:26EJ, tunneling rate t �
1:8

ffiffiffiffiffiffiffiffiffiffiffiffi
EJEC

p
exp½�0:7ðEJ=ECÞ1=2	 � 70ð2�Þ MHz; these

parameters only marginally depend on � [18].
For mesoscopic aluminum junctions with critical current

density 500 A=cm2, the largest junction (EJ;4 ¼ �EJ)

has an area of about 1 �m2 [15]. For the topological qubit,
it is feasible to achieve the parameters �0 � 0:1 meV �
25ð2�Þ GHz, vF � 105 m=s, L� 5 �m, and T ¼ 20 mK.
For the interface, the effective coupling is g� �0�"�
2ð2�Þ GHz. Therefore, we have imperfections 
tunnel �
10�3, 
excite & 10�3, e���off � e�20j sin�off=2j < 10�3

(assuming �off � �=4), and e�E0=kBT < 10�3 [24].
Phase qubit.—A similar interface can be constructed to

couple the SC phase qubit [7,27] and the topological qubit.
A phase qubit is just a JJ with a fixed dc-current source I.
The phase qubit Hamiltonian is Hphase ¼ T þUphase,
where T ¼ 1

2ECV
2 and Uphase ¼ �I�0�� I0�0 cos�.

The qubit can be encoded in the two lowest energy states,
j0iphase and j1iphase, with magnitude of quantum fluctua-

tions 	0 and 	1, respectively. The coupling strength
between phase and topological qubits can be estimated as
gphase � E00ð"Þð	21 � 	20 Þ.

Conclusion.—We have proposed and analyzed a feasible
interface between flux and topological qubits. Our proposal
uses a flux qubit design with four JJs, such that the two
basis states of the qubit have a small phase separation �"
on a particular superconducting island, enabling us to
adiabatically switch on and off the coupling between
the flux and topological qubits. Such interfaces may enable
us to store and retrieve quantum information using the
topological qubit, to repetitively read out the topological
qubit with a conventional qubit, or to switch between
conventional and topological systems for various quantum
information processing tasks.
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Note added.—It was recently proposed to use the
Aharonov-Casher effect for quantum nondemolition mea-
surement of a topological qubit [11,12]. This proposal,
which applies in the parameter regime �> 1 where the

flux qubit has two possible tunneling pathways, exploits
the observation that whether two tunneling paths interfere
destructively or constructively can be controlled by the
state of the topological qubit. In contrast, our proposal,
which applies in the parameter regime �< 1 where the
flux qubit has only one tunneling pathway, exploits the
nonlinearity of the energy splitting Eð"Þ to achieve a
controlled-phase coupling between the topological and
flux qubits. Recently, the related work [28] appeared
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