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We propose a new cellular automaton (CA), the sweep rule, which generalizes Toom’s rule to any locally
Euclidean lattice. We use the sweep rule to design a local decoder for the toric code in d ≥ 3 dimensions,
the sweep decoder, and rigorously establish a lower bound on its performance. We also numerically
estimate the sweep decoder threshold for the three-dimensional toric code on the cubic and body-centered
cubic lattices for phenomenological phase-flip noise. Our results lead to new CA decoders with provable
error-correction thresholds for other topological quantum codes including the color code.
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To fault-tolerantly operate a scalable universal quantum
computer, one protects logical information using a quantum
error-correcting code and removes errors without dis-
turbing the encoded information [1,2]. This can be achieved
with stabilizer codes [3]. Each stabilizer generator is
measured, yielding an outcome �1, and a classical decod-
ing algorithm then computes the recovery operator.
Unfortunately, optimal decoding of generic stabilizer codes
is computationally hard [4,5]. Thus, to render this task
tractable, one should restrict attention to codes with some
structure.
Topological stabilizer codes [6–12], such as the toric and

color codes, are highly structured due to the geometric
locality of their stabilizer generators. Namely, any stabilizer
returning a −1 measurement outcome indicates the pres-
ence of errors in its neighborhood. By exploiting this
syndrome pattern, many efficient decoders with high error-
correction thresholds have been proposed [13–26].
However, most of these decoders use global classical
information about the measurement outcomes and, thus,
require communication between distant parts of the system.
In any realistic setting, new faults appear during the time
needed to collect and process global syndrome data
[19,27]. Thus, to avoid error accumulation, we desire fast
decoders, which ideally use only local information.
A very promising class of topological quantum code

decoders is based on cellular automata (CA) [28–30]. CA
decoders are very efficient, because they naturally incor-
porate parallelization and can be implemented on dedicated
hardware without any nonlocal communication. As initially
suggested in Ref. [13], a simple CA, called Toom’s rule
[31–33], can successfully protect quantum information
encoded into the 4D toric code on a hypercubic lattice.
Moreover, recent numerical simulations [34–36] indicate
that heuristic decoders based on Toom’s rule have nonzero

error-correction thresholds for toric codes in more than two
dimensions.
In this Letter, we address the fundamental question of

whether using a CA is a viable error-correction strategy for
topological quantum codes. First, we propose a new CA,
the sweep rule, which generalizes Toom’s rule to any
locally Euclidean lattice in d ≥ 2 dimensions. The sweep
rule shrinks (k − 1)-dimensional domain walls for any
k ¼ 2;…; d. Then, we use the sweep rule to design a
new local decoder of the toric code in d ≥ 3 dimensions,
the sweep decoder, and rigorously prove a lower bound on
its performance for perfect syndrome extraction. Finally,
we numerically demonstrate that the sweep rule suppresses
errors when measurements are noisy. In particular, we

FIG. 1. (Inset) The failure probability pfailðp; LÞ of the sweep
decoder for the 3D toric code on the bcc lattice L after Ncyc ¼ 28

correction cycles, where p is the phase-flip error rate and L is the
linear size of L. We estimate the threshold pthðNcycÞ ≈ 1.055%
from the crossing point of different curves. (Main) We find the
sustainable threshold pbcc

sus ¼ 0.99� 0.02% by fitting the numeri-
cal ansatz from Eq. (10) to the data.
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estimate the sustainable threshold error rate pbcc
sus ¼ 0.99�

0.02% of the sweep decoder for phase-flip errors and
imperfect syndrome measurements in the 3D toric code on
the body-centered cubic (bcc) lattice; see Fig. 1. Our
decoder works reliably against Pauli X or Z errors if the
corresponding syndrome is at least one-dimensional, i.e.,
not pointlike, and the error rate is below the threshold; thus,
it can protect topological quantum memories in d ≥ 4
dimensions. Our results lead to new decoders for the color
code in d ≥ 3 dimensions; see [37] or the accompanying
article [38].
Limitations of Toom’s rule.—Consider the square lattice

with a classical �1 spin placed on every face and encode
one bit of information by setting all spins to be eitherþ1 or
−1. We want to protect the encoded bit against random spin
flips, �1 ↦ ∓1. This can be achieved with a CA, which
flips certain spins based on locally available information. A
simple example is the deterministic Toom’s rule which sets

the spin sðTþ1Þ
C at time T þ 1 to

sðTþ1Þ
C ¼ sgnðsðTÞC þ sðTÞE þ sðTÞN Þ; ð1Þ

where sgnð·Þ is the sign function and sðTÞE and sðTÞN are the
neighboring spins on faces to the east and north,
respectively, at time T; see Fig. 2(a). The update can be
simultaneously applied to all the spins in the square lattice.
We can rephrase Toom’s rule as a conditional spin update

determined by the local configuration of the 1D domain
wall, i.e., the set of all edges of the lattice separating faces
with spins of different value. Let ϵðTÞ and σðTÞ denote the set
of faces with −1 spins and the corresponding domain wall
at time T ¼ 1; 2;…. We write σðTÞ ¼ ∂2ϵ

ðTÞ to capture the
fact that σðTÞ is the boundary of ϵðTÞ containing all the edges
bounding faces in ϵðTÞ. Then, Toom’s rule flips a spin on

some face f, i.e., sðTþ1Þ
f ¼ −sðTÞf , iff the east and north

edges of f belong to σðTÞ; see Fig. 2(a). If we know σðTÞ and
the set of all spins flipped between time T and T þ 1, which
we denote by ϱðTÞ, then the domain wall at time T þ 1 is

σðTþ1Þ ¼ σðTÞ þ ∂2ϱ
ðTÞ ð2Þ

with addition modulo 2. Note that this update does not
require the knowledge of the actual spin values but only the
locations of flipped spins. Thus, it may be viewed as a local
rule governing the dynamics of the domain wall. Moreover,
if the domain wall disappears by time T, i.e., σðTÞ ¼ 0, then
ϱ ¼ P

T−1
i¼1 ϱðiÞ can serve as an estimate [40] of ϵð1Þ with the

boundary ∂2ϱ matching the initial domain wall σð1Þ. As we
will see later, correcting errors in the toric code in d ≥ 3

dimensions can also be rephrased as estimating ϵð1Þ given
its boundary σð1Þ, by exploiting the domain-wall structure
of the syndrome.
This version of Toom’s rule works for the square lattice,

but it is not obvious how to generalize it to other 2D lattices
or to higher dimensions. To illustrate the difficulty, consider
the 2D lattice in Fig. 2(b). If one uses a simple update rule
“flip a spin iff east and north edges of the face belong to the
domain wall,” then there exist spin configurations with
domain walls which cannot be removed by repeated
application of this rule. For such error syndromes, the
Toom’s rule decoder fails to correct the erroneous spins. To
define a workable version of Toom’s rule, the lattice must
have suitable properties, which we now specify.
Causal lattices.—We consider a lattice L, which is a

triangulation (possibly without any symmetries) of the
Euclidean space R2. We denote by ΔiðLÞ the set of all
i-simplices of L. In particular, Δ0ðLÞ, Δ1ðLÞ, and Δ2ðLÞ
correspond to vertices, edges, and triangular faces of L,
respectively. We assume that each ΔiðLÞ contains count-
ably many elements and define the sweep direction as a unit
vector ⃗t ∈ R2 not perpendicular to any edge of L.
We define a path (u: w) between two vertices u and

w of the lattice L to be a collection of edges
ðu; v1Þ;…; ðvn; wÞ ∈ Δ1ðLÞ, where vi ∈ Δ0ðLÞ. If the sign
of the inner product ⃗t · ðvi; viþ1Þ is the same for all edges in
the path (u: w), then we call the path causal and denote it by
(u ↕ w). We remark that any pair of the vertices of L is
connected by a path, but there might not exist a causal path
between them; see Fig. 3(a). Finally, we define the causal
distance

d↕ðu; wÞ ¼ min
ðu↕wÞ

jðu ↕ wÞj ð3Þ

to be the length of the shortest causal path between u and w;
if there is no causal path, then d↕ðu; wÞ ¼ ∞.
We observe that the sweep direction ⃗t induces a binary

relation ≼ over the set of vertices Δ0ðLÞ. We say that u
precedes w, i.e., u ≼ w for u; w ∈ Δ0ðLÞ, iff u ¼ w or there
exists a causal path (u ↕ w) and ⃗t · ðvi; viþ1Þ > 0 for any
edge ðvi; viþ1Þ ∈ ðu ↕ wÞ. Equivalently, we write w ≽ u
and say that w succeeds u. Abusing the notation, we write
κ ≽ w if all vertices Δ0ðκÞ of a k-simplex κ ∈ ΔkðLÞ
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FIG. 2. (a) At time T, the spin sðTÞC ¼ −1 (green face) differs

from its neighbors to the east sðTÞE ¼ 1 and north sðTÞN ¼ 1 (red

faces). According to Eq. (1), Toom’s rule sets sðTþ1Þ
C ¼ 1. (b) A

2D lattice built of three types of parallelograms. A domain wall
(red) cannot be removed by repeated application of a naive
generalization of Toom’s rule. (c) The 3D toric code on the bcc
lattice [39] has qubits on faces and X stabilizers associated with
edges. Any configuration of Z errors (green) results in a 1D
looplike X syndrome (red).

PHYSICAL REVIEW LETTERS 123, 020501 (2019)

020501-2



succeed w, i.e., u ≽ w for all u ∈ Δ0ðκÞ, and similarly
for κ ≼ w.
We can view the partial order ≼ between vertices of the

lattice as a causality relation between points in the ð1þ
1ÞD spacetime with ⃗t corresponding to the time [41]
direction; see Figs. 3(a) and 3(b). We define the future
↑ðvÞ and past ↓ðvÞ of a vertex v ∈ Δ0ðLÞ as the collection
of all simplices of L succeeding and preceding v, namely,

↑ðvÞ ¼ ⋃
d

k¼0

fκ ∈ ΔkðLÞjκ ≽ vg; ð4Þ

↓ðvÞ ¼ ⋃
d

k¼0

fκ ∈ ΔkðLÞjκ ≼ vg: ð5Þ

Every finite subset of vertices V ⊆ Δ0ðLÞ has a unique
supremum, the vertex sup V, where sup V lies in the future
of each u ∈ V, and, furthermore, sup V lies in the past of
each vertex w which is in the future of each v ∈ V. The
infimum inf V is defined analogously. Lastly, we define the
causal diamond ⋄ðVÞ as the intersection of the future of inf
V and the past of sup V, i.e.,

⋄ðVÞ ¼ ↑ðinf VÞ ∩ ↓ðsup VÞ: ð6Þ

This discussion of causal structure generalizes to lattices
embedded in a torus; however, caution is needed, since the
partial order is well defined only within contractible
regions. For higher-dimensional lattices, we make certain
assumptions about their causal structure, such as the
existence of a unique infimum and supremum of V. To
avoid technicalities, we call lattices satisfying those
assumptions causal; see Appendix A [42]. Note that causal
lattices are sufficient to define the sweep rule and prove a
nonzero threshold of the sweep decoder.
Sweep rule.—Let L be a 2D causal lattice with �1 spins

on triangular faces and ϵ ⊆ Δ2ðLÞ denote the set of all faces
with −1 spins. The corresponding domain wall σ can be

found as the boundary ∂2ϵ. Let v be a vertex of L and
denote by σjv the restriction of the domain wall σ to the
edges incident to v. We say that v is trailing if σjv is
nonempty and belongs to the future of v, namely,
σjv ⊂ ↑ðvÞ; see Fig. 4. We propose a new local spin update
rule defined for every vertex v of L.
Definition 1 (sweep rule).—If a vertex v is trailing, then

find a subset φðvÞ of neighboring faces of v in the future
↑ðvÞ with a boundary locally matching the domain wall,
i.e., ½∂2φðvÞ�jv ¼ σjv, and flip spins on faces in φðvÞ.
This rule is deterministic, and there is a unique φðvÞ,

which one can find in constant time. The spin update results
in the domain wall being locally pushed away from any
trailing vertex v; see Fig. 4. Note that nothing happens if a
vertex is not trailing. We can, however, consider a very
similar CA, the greedy sweep rule, which always tries to
push the domain wall away from v in the sweep direction ⃗t,
irrespective of v being trailing; see Appendix B [42].
Lemma 2 (sweep rule properties).—Let σ be a domain

wall in the causal lattice L. If the sweep rule is simulta-
neously applied to every vertex of L at time steps
T ¼ 1; 2;…, then (1) (support) the domain wall σðTÞ at
time T stays within the causal diamond ⋄ðσÞ ¼ ⋄(Δ0ðσÞ),
i.e.,

σðTÞ ⊂ ⋄ðσÞ; ð7Þ

(2) (propagation) the causal distance d↕ðv; σÞ ¼
minu∈Δ0ðσÞd↕ðv; uÞ between σ and any vertex v of σðTÞ is
at most T, i.e.,

d↕ðv; σÞ ≤ T; ð8Þ

(3) (removal) the domain wall is removed by time T�, i.e.,
σðTÞ ¼ 0 for all T > T�, where

T� ¼ max
ðinf σ↕sup σÞ

jðinf σ ↕ sup σÞj: ð9Þ

See Appendix C [42] for a proof.
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FIG. 3. (a) Vertices u and v are connected by a path (u: v) (red),
but there is no causal path between them; v and w are connected
by a causal path (v ↕ w (blue). We shaded in green and blue the
future ↑ðvÞ and past ↓ðvÞ of v. (b) The causal diamond ⋄ðVÞ
(blue) of a subset of vertices V ¼ fv1; v2; v3; v4g is defined as the
intersection of the future of the infimum of V with the past of the
supremum of V. (c) The sweep rule is defined for every vertex
and locally updates �1 spins on neighboring faces. Since the
vertex v is trailing (see below), spins on two green faces will be
flipped.

T = 1 T = 2 T = 3

FIG. 4. For each trailing vertex v (black) at time T ¼ 1, 2, 3, the
sweep rule finds a subset φðvÞ of neighboring faces (green) in the
future ↑ðvÞ, whose boundary ∂2φðvÞ locally matches the domain
wall σðTÞ (red), i.e., ½∂2φðvÞ�jv ¼ σðTÞjv. Flipping spins in φðvÞ
pushes σðTÞ away from v in the sweep direction ⃗t. Note that φðvÞ
and σðTÞ are always in the causal diamond ⋄ðσð1ÞÞ (blue) of the
initial domain wall σð1Þ.
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The sweep rule may also be defined for vertices of
a d-dimensional causal lattice L with spins placed on k-
simplices ΔkðLÞ, where k ¼ 2;…; d. However, for k ≠ d
the local choice of spins to flip φðvÞ may not be unique
(this does not happen in 2D). Thus, we consider a family of
rules corresponding to different ways of choosing φðvÞ in
such a way that, roughly speaking, the local causal structure
of the domain wall is preserved after flipping spins on k-
simplices in φðvÞ; see Appendix B [42].
Sweep decoder.—We may use the d-dimensional version

of the sweep rule to decode the toric code on the d-
dimensional causal lattice L. Recall that the toric code of
type k ¼ 1;…; d − 1 is defined by placing qubits on k-
simplices of L and associating X and Z stabilizers with
(k − 1) and (kþ 1)-simplices. Then, Z stabilizers, Z-logical
operators, and X syndromes correspond to, respectively, the
elements of im ∂kþ1, ker ∂k, and im ∂k, where ∂i denotes
the i-boundary operator; see Appendix A [42]. If ϵ ⊆
ΔkðLÞ is the set of qubits affected by Z errors, then the
corresponding X syndrome is σ ¼ ∂kϵ. Thus, for k ≥ 2,
decoding of Z errors can be phrased as the already
discussed problem of estimating locations of −1 spins
given the corresponding domain wall. Note that for k ≤
d − 2 decoding of X errors is analogous but in the dual
lattice L� with the Z syndrome forming a ðd − k − 1Þ-
dimensional domain wall.

This sweep decoder may fail for either one of two
reasons. First, it might not terminate within time Tmax,
which results in ϱ ¼ FAIL. Second, the correction ϱ
combined with the initial error ϵ may implement a non-
trivial logical operator, i.e., ϱþ ϵ ∉ im ∂kþ1. However, the
sweep decoder has a nonzero error-correction threshold—if
the Z error rate is below the threshold, then the failure
probability rapidly approaches zero as the code distance
grows. We establish this fact by deriving a lower bound
p�
th > 0 on the threshold.
Theorem 3 (threshold).—Consider a family of causal

lattices L of growing linear size L on the d-dimensional
torus, and define the toric code of type k ¼ 2;…; d − 1 on
L. There exists a constant p�

th > 0, such that for any phase-
flip error rate p < p�

th the failure probability of the sweep

decoder for perfect syndrome extraction goes to zero
as L → ∞.
In Appendix D [42], we present a rigorous proof of

Theorem 3 based on renormalization group ideas
[17,28,44]; here we only outline the proof strategy.
Proof.—First, we decompose each error configuration

into recursively defined “connected components,” where a
“level-n” connected component has a linear size growing
exponentially with n. The probability of a level-n con-
nected component is doubly exponentially small in p=p�

th.
The connected components are well isolated from other
errors; therefore, using Lemma 2 and some modest
assumptions about the lattice family, we can show that a
connected component with a linear size small compared to
L will be successfully removed by repeated application of
the sweep rule. Therefore, the sweep decoder fails only if
the error configuration contains a level-n connected com-
ponent with a size comparable to L, which is very
improbable for large L and p < p�

th. ▪
Numerical simulations.—In Theorem 3, we assumed that

the sweep rule is applied flawlessly, but in a realistic
scenario the rule itself is noisy. We have numerically
investigated the performance of the sweep decoder for
the 3D toric code on the bcc lattice with qubits on faces and
a phenomenological noise model. Each correction cycle
consists of one time step of the sweep decoder, adding new
Pauli Z errors on qubits with probability p and extracting
syndrome bits, which are flipped with probability p. Using
Monte Carlo simulations, we find the threshold pthðNcycÞ
for a fixed number Ncyc of noisy correction cycles followed
by perfect syndrome extraction and full decoding. Note that
pthð1Þ is the threshold for perfect syndrome extraction. We
are, however, interested in the so-called sustainable thresh-
old pbcc

sus ¼ limNcyc→∞pthðNcycÞ [27,45]. We observe that the
threshold pthðNcycÞ is very well approximated by the
numerical ansatz

pthðNcycÞ ∼ pbcc
susf1 − ½1 − pthð1Þ=pbcc

sus �N−γ
cycg; ð10Þ

with the fitting parameters pbcc
sus ¼ 0.99� 0.02% and

γ ¼ 0.855� 0.010; see Fig. 1. These numerical results
were actually obtained for a variant of the sweep decoder
based on the greedy sweep rule, which has a higher
threshold than the decoder based on the sweep rule. In
Appendix B [42], we discuss the greedy sweep rule, explain
how it generalizes to locally Euclidean lattices, and use it to
estimate the sustainable threshold of the 3D toric code on
the cubic lattice pcubic

sus ¼ 1.98� 0.02%.
Discussion.—We have presented a new CA, the sweep

rule, which generalizes Toom’s rule to any locally
Euclidean d-dimensional lattice. This rule can be used to
decode a topological quantum code whose error syndrome
is at least one-dimensional, including the color code; see
[37,38]. We proved that a decoder based on the sweep rule
has a nonzero accuracy threshold for the toric code, and we

Algorithm Sweep decoder

Input: X syndrome σ ∈ im ∂k, k ¼ 2;…; d − 1
Output: k-dimensional correction ϱ ⊆ ΔkðLÞ
Initialize T ¼ 1, σð1Þ ¼ σ
Unless T > Tmax or σðTÞ ¼ 0 repeat:

1. apply the sweep rule simultaneously to every vertex of L to
get ϱðTÞ;

2. find σðTþ1Þ ¼ σðTÞ þ ∂kϱ
ðTÞ;

3. update time step T ← T þ 1.
If T ≤ Tmax [43], then ϱ ¼ P

T−1
i¼1 ϱðiÞ; otherwise, ϱ ¼ FAIL

Return ϱ
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numerically studied its performance against a phenomeno-
logical noise model.
Our results provide a rigorous justification for using CA

error-correction strategies for topological quantum codes.
We hope that our proof techniques will lead to new CA
decoders with provable thresholds for codes on lattices with
boundaries, hyperbolic lattices, or other quantum low-
density parity-check codes.
The sweep rule may be of independent interest for

defining statistical-mechanical problems inspired by quan-
tum information [46–48]. As for Toom’s rule, one can
consider a nondeterministic variant of the sweep rule and
study the evolution of spins generated by this probabilistic
CA. We conjecture that the resulting spin dynamics is
nonergodic and that the phase diagram contains regions
with multiple coexisting stable phases, as established in 2D
by Toom [31].
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