
Why study  

quantum information? 



Big Questions 
HEP: 
 

What underlying theory explains the observed elementary 

particles and their interactions, including gravity?  

 

QIS: 
 

Can we control complex quantum systems and if so what 

are the scientific and technological implications?  
 

Not the frontier of short (subnuclear) distances or long 

(cosmological) distances, but rather the frontier of highly 

complex quantum states: The entanglement frontier 
 

Also: emergence of classicality, security of quantum cryptographic 

protocols, foundations of statistical mechanics and thermalization, 

information theoretic principles illuminating the foundations of quantum 

physics, information processing by e.g. black holes, etc. 



Truism:  

the macroscopic world is classical.  

the microscopic world is quantum. 
 

Goal of QIS:  

controllable quantum behavior in scalable systems 
 

Why? 
 

Classical systems cannot simulate quantum systems 

efficiently (a widely believed but unproven conjecture). 
 

But to control quantum systems we must slay the dragon of 

decoherence é  
 

Is this merely really, really hard? 

Or is it ridiculously hard? 
 



Toward quantum supremacy 
 

The quantum computing adventure will enter the new, more 

mature phase of ñquantum supremacyò once we can prepare 

and control complex quantum systems that behave in ways 

that cannot be predicted using digital computers (systems that 

ñsurpass understandingò and surprise us). 
 

To reach that goal, it will be useful to gain a deeper 

understanding of two questions:  
 

What quantum tasks are feasible? 

What quantum tasks are hard to simulate classically?  

 

Might it be that the extravagant ñexponentialò classical 

resources required for classical description and simulation of 

generic quantum states are illusory, because quantum states 

in Nature have succinct descriptions? 



Convergence: 

 

Concern about the horizon of Mooreôs law 

scaling in silicon (running out of ñroom at the 

bottomò). 

 

Ability to control ñsingle quantum systemsò 

like single atoms or electron spins. 

 

Recognition of computational power inherent 

in quantum mechanics. 

 

Relevance to the security of public key 

cryptography. 



Finding Prime Factors 

1807082088687 

4048059516561 

6440590556627 

8102516769401 

3491701270214 

5005666254024 

4048387341127 

5908123033717 

8188796656318 

2013214880557 

? ³ = ? 



Finding Prime Factors 

1807082088687 

4048059516561 

6440590556627 

8102516769401 

3491701270214 

5005666254024 

4048387341127 

5908123033717 

8188796656318 

2013214880557 

3968599945959 

7454290161126 

1628837860675 

7644911281006 

4832555157243 

4553449864673 

5972188403686 

8972744088643 

5630126320506 

9600999044599 

³ = 

Shor ó94 

The boundary between 

ñhardò and ñeasyò seems to 

be different in a quantum 

world than in a classical 

world. 



Classical Computer Quantum Computer 

Factor 193 digits  

in 30 CPU years (2.2 GHz). 

Factor 500 digits  

in 1012 CPU years. 

Factor 193 digits  

in 0.1 second. 

Factor 500 digits  

in 2 seconds. 

Peter Shor 

(1994) 



More parallelism? 
 

Factoring 2048 bit number é 
 

Classical algorithm: 10 year run time and requires a 

server farm covering 1/4 of North America, at cost 

of $106 trillion. Consumes 106 terawatt (105 times 

world output). Would consume world's supply of 

fossil fuels in one day. 
 

Quantum algorithm (brute force): 10K logical qubits 

and 10M physical (superconducting) qubits. 1 cm 

spacing to allow room for lost of wires. Costs $100B 

($10K per physical qubit) and runs in 16 hours. 

Consumes 10 MWatt. (We need to get the cost 

down.)      J. Martinis 

 

 



Weôre very sorry, Eddie Farhi 

Your algorithmôs quantum. 

Canôt run it on those mean machines 

Until weôve actually got óem. 

  

Youôre not alone, so go on home, 

Tell Jeffrey and tell Sam: 

Come up with something classical 

Or else itôs just a scam. 

  

Unless é you think itôs on the brink 

A quantum-cal device. 

That solves a game and brings you fame. 

Damn! That would be nice! 



Quantum information vs. Classical information 

 
1) Randomness. Clicks in a Geiger counter are 

intrinsically random, not pseudorandom. Canôt predict 

outcome even with the most complete possible 

knowledge of the state. 

 

2) Uncertainty. Operators A and B do not commute 

means that measuring A influences the outcome of a 

subsequent measurement of B.  

 

3) Entanglement. The whole is more definite than the 

parts. Even if we have the complete possible 

knowledge of the (pure) state of joint system AB, the 

(mixed) state of A may be highly uncertain.  



Qubit 
 

A vector (actually a ñrayò because the normalization is 1 

by convention, and the overall phase does not matter) in a 

two dimensional complex Hilbert space.  
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(two real parameters). 

 

ñClassicalò in the special case where |0Ē or |1Ē is 

ñpromisedò. 

 

The two orthogonal states |0Ē and |1Ē are perfectly 

distinguishable. If Alice sends one of the other to Bob, he 

can measure in the { |0Ē, |1Ē } basis and identify the state.  



Qubit 

 
The orthogonal states 

( )
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are also perfectly distinguishable. 
 

Suppose Alice sends either |1Ē or |+Ē to Bob.  

Now Bob cannot distinguish the states 

perfectly. His best measurement, which 

succeeds with probability cos2(p/8) Ü.853 if 

the two states are equally likely, projects 

onto the orthogonal basis shown. (Prove it! 

Generalize it!) Alternative: a measurement 

which is sometimes inconclusive, but 

identifies the state correctly when 

conclusive. 
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Information vs. disturbance 

Suppose Alice prepares either |jð or |yð . To distinguish the two 

possible states, Eve performs a unitary transformation that 

rotates her probe while leaving Aliceôs state intact 
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where | e ð and | f ð are normalized states.  Since U preserves 

inner products,  
| | | ,f ey j y jà ðÖà ð=à ð

and if |jð and |yð are nonorthogonal, then 

the states of the probe are the same. Eveôs measurement of the 

probe cannot reveal any information about whether the state is 

|jð or |yð . On the other hand if |jð and |yð are orthogonal, the 

probe states can also be orthogonal. Eve can copy the info. 
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Tensor Product 

 
System divided into two subsystems 

{| , 1,2, , }A Ai i dð = »

Basis states of the composite system are distinguishable if 

they can be distinquished on either Aliceôs or Bobôs side: 

B A 

{| , 1,2, , }B Ba a dð = »
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If Alice and Bob both have qubits, the basis states 

{| 00 ,| 01 ,|10 ,|11 }ð ð ð ð

are all distinguishable. 



Many qubits 

 

A1 

spanned by é 

,| x yx y dà ð=where 
 

-- complex dimension d = 2n, 2n+1 -2 real parameters. 
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ð= ðä For 300 qubits, vector in a space with 

dimension 2300 ~ 1090, more than the 

the number of atoms in the visible universe. No succinct 

classical description of the quantum state, in general.  



Which decomposition into subsystems? 

 

A1 

Typically dictated by spatial locality. The qubits may be in 

different cities, or encoded in distinct atoms, é 
 

A product state 

A2 A3 An 
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has a succinct description; only 2n real parameters. It can be 

created by n parties each acting locally in his/her city. 

If a (pure) state is not a product state, it is entangled. 

Entanglement cannot be created by remote parties acting 

locally, even if they communicate classically. 



Entanglement 

 

A1 A2 A3 An 
é.. 

However, by bringing the qubits 

together pairwise, or by sending qubit 

messages between parties, arbitrary 

entangled states can be constructed. 

If a (pure) state is not a product state, it is entangled. 

Entanglement cannot be created by remote parties acting 

locally, even if they communicate classically. 

Ak Ak+1 

Two qubit gates are universal. In general, though, this 

construction is inefficient.  For most entangled states, an 

exponentially large number of two-qubit gates are needed to 

create the state, starting with a product state.  



Entanglement 

 
A B 
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Charlie prepares one of several possible mutually orthogonal 

entangled states (for Charlie the states are perfectly 

distinguishable). He sends one subsystem to Alice and the 

other subsystem to Bob. 
 

If the states are all maximally entangled, neither Alice nor Bob, 

acting locally, can acquire any information distinguishing them. 

Compare: 

A B 

{| 00 ,| 01 ,|10 ,|11 }ð ð ð ðvs. 
(In this case, Alice and Bob 

each acquires one bit.) 



Entanglement 

 
A B 
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A B 

Two classical bits are encoded by the state Charlie 

chooses. But neither Alice nor Bob can acquire this 

information locally. Instead, the information is stored 

nonlocally, shared equally by Aliceôs and Bobôs 

qubits. 
 

Though either Alice or Bob acquires only a random 

bit by measuring the qubit locally, Aliceôs and Bobôs 

outcomes are correlated. If they both measure in the 

0,1 basis, they acquire the ñparity bitò or the 

entangled state, and if the both measure in the +,- 

basis they acquire the ñphase bit.ò 
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Entanglement 

 A B 
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A B 

Classical bits can be correlated, too, but the correlations among the qubits 

in a Bell pair are stronger than classical correlations. There is just one way 

to look at a bit, but there are two complementary ways to look at a qubit --- 

we can measure either one of the two noncommuting Pauli operators: 
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Entanglement, unlike classical correlation, is 

monogamous. If Alice and Bob are 

maximally entangled with one another, 

neither can be entangled with Eve at all. 



Alice, Bob, and Eve share 

a three-part state: 

And if  also X Ã X =1 then it must be 

Monogamy of 

Entanglement 
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Suppose that Alice and Bob can verify that each of their pairs satisfies 

X Ã X =1= Z Ã Z. .  If Z Ã Z=1, then the state must be 
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Because Aliceôs qubit is perfectly correlated with Bobôs in both bases, it is 

uncorrelated with Eveôs system. Alice and Bob can measure in either basis 

to generate correlated bits, and Eve canôt learn anything about this shared 

bit by measuring her system. If the Alice/Bob correlation were merely 

classical, there would be no limitation on their classical correlation with Eve. 

 



Entanglement 

 

A1 A2 A3 An 
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For a system with many qubits, how much quantum information does Bob 

acquire, if Alice sends qubits one at a time. This can be quantified by 

entropy. Consider a typical state of n qubits. 

In the classical case, each bit received conveys one bit of information. In 

the quantum case, the first ~ n/2 qubits received convey essentially no 

information, each of the rest carry about two qubits of information.  
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Quantum entanglement 
If you read ten pages of an ordinary hundred-page book, you learn about 

10% of the content of the book. But if you read ten pages of a ñtypicalò 

hundred-page quantum book, you learn almost nothing about the content of 

the book. That's because nearly all the information in a quantum book is 

encoded in the correlations among the pages; you can't access it if you 

read the book one page at a time.  
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é. é. 

Describing ñtypicalò quantum states with many parts requires extravagant 

(exponential) classical resources.  

 

Can we verify that Nature allows states with no succinct classical 

description?  
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Alice 

(Pasadena) 

Bob 

(Waterloo) 

Donald 

(Denver) 

There are many sets of coins, identically prepared by Donald. 

 

For each of the three coins, in Pasadena or Waterloo, the probability is ½ 

that the coin is heads or tails.  
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