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Quantum computing applications

Dirac (1929): “The underlying physical laws necessary for the mathematical 
theory of a large part of physics and the whole of chemistry are thus 
completely known, and the difficulty is only that the exact application of 
these laws leads to equations much too complicated to be soluble.”

Feynman (1981): “You can simulate this with a quantum system, with 
quantum computer elements. It’s not a Turing machine, but a machine of a 
different kind.”

Artificial intelligence may drive future progress in (strongly correlated) 
chemistry and materials science. Eventually, quantum computers can 
accelerate progress by providing abundant training data.



Ground states in chemistry and materials

Dirac: “… equations much too complicated to be soluble.”

Yet, heuristic classical algorithms have been very successful. 

We are targeting the relatively small “strongly correlated” corner of chemistry 
and materials science, where such methods falter. 

Can quantum computers efficiently solve for ground states in cases where 
classical methods fail?

Quantum computers cannot find ground states for QMA-hard cases, but 
that’s okay. Nature does not find these states either.

How useful are quantum computers in physically relevant situations that are 
beyond the reach of classical methods?



Ground states in chemistry and materials

We are seeking problems that are (1) quantumly easy, (2) classically hard, (3) 
physically relevant.

A patchwork of heuristic classical methods including: HF, DFT, CC, QMC, 
DMRG, TN, NN, … These lack performance guarantees, but often work. Cost 
need not scale exponentially with problem size. 

Quantum algorithms are heuristic, too. We need an initial state that has 
sufficient overlap with the ground state. 

Strong correlations can result in competing phases, first-order quantum phase 
transitions, … Adiabatic state preparation may fail.

Garnet Chan et al., Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry (2023)



Ground states in chemistry and materials

We are seeking problems that are (1) quantumly easy, (2) classically 
hard, (3) physically relevant.

Perhaps exponential quantum advantage should not be expected.

But a significant polynomial advantage is a reasonable expectation and 
could be quite impactful.

These applications require deep quantum circuits. Fault-tolerant 
quantum computation will be needed, at a high cost in physical qubits 
and gates. 

Garnet Chan et al., Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry (2023)



Near-term applications

Variational methods like VQE are hampered by barren plateaus.

Simulations of quantum dynamics using near-quantum analog and 
digital quantum platforms can be scientifically informative. Surprises 
are likely.

Here, early fault-tolerant methods and error mitigation methods can 
be helpful. 



Finding a local minimum

We are seeking problems that are (1) quantumly easy, (2) classically hard, (3) 
physically relevant.

Sometimes nature is unable to find the global minimum of the energy. That is 
true even classically (spin glasses, combinatorial optimization).

Instead, nature easily finds a local minimum when we cool the system.

Result: cooling to a local minimum is universal for quantum computation and 
there is a quantum algorithm that cools efficiently.

Hence, finding a local minimum is quantumly easy and classically hard 
(assuming BPP ≠ BQP). 

Chen, Huang, Preskill, Zhou, arXiv:2309.16596



What is a local minimum?

• Domain: 𝑛-qubit state 𝝆

• Energy function: 𝐶 𝝆 = tr 𝑯𝝆

• A family of perturbations: 𝝆 → 𝒫𝜽[𝝆]

• 𝝆 is an 𝝐-approximate local minimum if

𝐶 𝝆 ≤ 𝐶 𝒫𝜽 𝝆 + 𝜖 𝜽

for all small enough 𝜽

𝐶(𝝆)

𝝆

A

B

C

D

E

A, C, D, E are 𝜖-approx LM.
B is not.



Finding a local minimum: the problem

• Input:
1. 𝑯, where 𝑯 = poly(𝑛)

2. a family of perturbation 𝒫𝜽 𝜽

3. some 𝜖 > 1/poly(𝑛)

4. a (local) observable 𝑶

• Problem: Output estimated 
Tr 𝑶𝝆∗ within 𝜖 error for any 𝜖-
approx local minimum 𝝆∗ under 
the perturbations.

𝐶(𝝆)

𝝆

Any one of these is OK!

Note: purely classical input + output.



local minimum

Complexity of finding a local minimum

System 

𝑯
Bath

Local unitary perturbation Thermal perturbation

For some 2D systems, finding a local minimum 
is classically HARD and quantumly EASY!

• There are exp exp 𝑛 many local minima 
for all quantum systems!

• Finding a local minimum is always 
classically EASY.

Chen, Huang, Preskill, Zhou, arXiv:2309.16596



Thermal perturbations: inspired by nature

where ℒ𝑎 is a thermal Lindbladian for the system weakly coupled to a bath

Based on rigorous version of Davies equation 
Mozgunov, Lidar 2020

System 

𝑯
Bath

Parameters

inverse temperature 

coarse-grain timescale

local jump operators

Transition rate of

HeatingCooling



More on thermal Lindbladian

• Rigorous version of “Davies generator”

“Filtered” 

local jump 

operator

Transition 

weight
Mozgunov, Lidar 2020

Chen, Kastoryano, Brandão, Gilyén 2023



Finding a local mimimum under 
thermal perturbations is quantumly easy

Quantum thermal gradient descent algorithm:
• Consider any 𝑛-qubit Hamiltonian 𝑯 where 𝑯 ≤ 𝐵

• To find an 𝜖-local minimum under thermal perturbations by ℒ𝑎 𝑎=1
𝑚 :

Finding a local minimum is quantumly easy!

Initialize at any state 𝝆 0 , and for each step 𝑡 = 1, 2, 3, …

This provably converges within 𝑂 𝐵3/𝜖2 steps!

Estimate 𝑔𝑎 = 𝜕𝑎 𝑯 = tr 𝝆ℒ𝑎
† 𝑯 to 0.01𝜖 precision

𝝆 𝑡

If all 𝑔𝑎 > −0.99𝜖, STOP. Otherwise evolve 𝝆 𝑡 =

exp σ𝑎 𝜃𝑎ℒ𝑎 [𝝆 𝑡−1 ] where 𝜃𝑎 = −min(0, 𝑔𝑎)/9𝐵
2

𝝆 𝑡−1



Finding a local minimum under 
thermal perturbations is classically hard

• Theorem: Certain 2D Hamiltonians 
whose ground states encode 
universal quantum computation 
have no suboptimal local minima
when 𝜖−1, 𝛽, 𝜏 ≥ poly(𝑛).

GS = σ𝑡=0
𝑇 𝜉𝑡 𝑼𝑡⋯𝑼2𝑼1 0

𝑛 ⊗ 𝑡

GS 𝒁𝑗 GS ≈ ⟨0𝑛|𝑼𝐶
† 𝒁𝑗 𝑼𝐶 0

𝑛

For any circuit 𝑼𝐶 = 𝑼𝑇⋯𝑼1

If quantum circuits 
cannot be efficiently 
simulated classically, 
then finding a local 
minimum of H is 
classically hard.



For a 2D quantum system, finding a 
local minimum under thermal 
perturbations is classically hard and 
quantumly easy!

For typical physical systems, classical 
algorithms are nonetheless used 
routinely (e.g. DFT, DMRG, etc.), often 
with great success.

How to identify more systems where 
quantum beats classical?

Quantum advantage in cooling to local minima

System 

𝑯
Bath



Energy landscape of 
classical ansatz

Energy landscape under
thermal (quantum) perturbations

𝝆𝒘𝑓

𝝆𝒘1

𝝆𝒘2

𝑔𝑎 = tr ℒ𝑎
† 𝑯 𝝆𝒘𝒇

Evaluate gradient

ℒ𝑎
† 𝑯 is often quasi-local 
 can evaluate classically

𝝆𝑄

A possible method 
to detect quantum 
advantage

𝑔𝑎 < −𝜖 

quantum advantage!

Quantum advantage in cooling to local minima



Certifying a quantum state

We have a classical description of an n-qubit target pure state 𝜓 .

We have access to multiple copies of an n-qubit state 𝜌 in the lab.

We want to check whether the fidelity 𝐹 = 𝜓 𝜌 𝜓 is close to 1.

For previously proposed certification methods, one of these is true:

-- deep quantum circuits required.
-- exponentially many measurements needed.
-- only works for a class of states with low entanglement.
-- no rigorous guarantee of accuracy.



Certifying a quantum state

Classical shadows from random Pauli measurement. Easy measurements, but 
number of copies needed to predict fidelity accurately is exponential in n.

Classical shadows from random Clifford measurement. Circuits with depth 
comparable to n needed. Not currently practical for n ≈100 qubits.

Cross-entropy benchmark (XEB). Easy measurements, but can access only the 
terms in 𝜌 that are diagonal in the Z basis. States far from the target can 
obtain a high score. 

Result: Efficient certification using single-qubit measurements with 
performance guarantees.

Huang, Preskill, Soleimanifar, arXiv:2404.07281



What we do in the lab: Single-qubit measurements

Select one of the n qubits uniformly at random.

Measure the selected qubit in the X, Y, or Z basis, chosen 
uniformly at random.

Measure the remaining n-1 qubits in the Z basis.

Repeat many times.

That’s all!

Huang, Preskill, Soleimanifar, arXiv:2404.07281



What we do with the data: The shadow overlap

Two n-qubits strings 𝑏0, 𝑏1are compatible with the (n-1) Z-basis measurement 
outcomes.

If the n-1 qubits were measured in the ideal target state |𝜓〉, the 
(unnormalized) post-measurement state would be 

𝜓
𝑏0 , 𝑏1

〉 = |0 𝑏0 𝜓 + 1 𝑏1 𝜓 .

Using the randomized X/Y/Z measurement outcome and the classical shadow 
formalism, estimate the fidelity 𝜔 of that ideal one-qubit state with the 
postselected one-qubit lab state.

Estimated fidelity of the n-qubit lab state with the 
target state is:

That’s all!

.| | [ ]F       



How the shadow overlap tracks the fidelity

| | 1  implies [ ] 1 .F          

[ ] 1  implies .| | 1F          

Here 𝜏 is the relaxation time of a (lazy) random walk on n-bit strings that 
converges to the stationary distribution 𝜋 𝑏 = 𝑏 𝜓 2.

(This walk is not used in the protocol itself, only in the analysis of the 
protocol.)

Thus we can certify that 𝜌 is 𝜖-close to 𝜓 by measuring O(𝜏2/𝜖2) samples 
(actually O(𝜏/𝜖) for optimal choice of measurement basis).

Furthermore, 𝜏 = 𝑂(𝑛2) for Haar-random target states. 



Shadow overlap vs. XEB as proxies for fidelity

Target phase state: 𝜓 = 𝑈𝑝ℎ𝑎𝑠𝑒 ⊗ 𝜓𝑖 .

White noise: global depolarizing noise.



Shadow overlap vs. XEB as proxies for fidelity

Target phase state: 𝜓 = 𝑈𝑝ℎ𝑎𝑠𝑒 ⊗ 𝜓𝑖 .

Coherent noise: Gaussian-distributed shifts of amplitudes and phases.



Shadow overlap is more forgiving than fidelity

n|  a d |     

Fidelity is 0, shadow overlap is 0.

n|  a d |      

Fidelity is 0, shadow overlap is (n-1)/n.

Fidelity remains stuck at zero, while the shadow overlap steadily 
improves as we flip more bits. (The shadow overlap behaves like the 
Hamming distance between bit strings.) Therefore the shadow overlap 
can be advantageous when we are training quantum circuits.



Training quantum circuits using the shadow overlap

Fidelity: Circuit wanders aimlessly on the barren plateau.
Shadow overlap: A high-fidelity circuit is easily found. 

Goal: training a quantum 
circuit of H, CZ, T gates to 
prepare an MPS target 
state, using shadow 
overlap as a loss function.

(a) The shadow overlap 
increases steadily as circuit 
is executed.

(b) Training with fidelity 
fails, while training with 
shadow overlap succeeds.



Certifying a quantum state

Using the shadow overlap, we can certify fidelity 
of a lab state with a target pure state using single-
qubit measurements. 

A more robust benchmarking method than, for 
example, the cross-entropy benchmark (XEB).

Evade barren plateaus by training quantum circuits using the shadow 
overlap rather than fidelity.

Can all pure quantum states be certified with single-qubit 
measurements of poly(n) copies?



Finding local minima and certifying quantum states
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