Planar AdS/CFT: wrapping it up

Sakura Schäfer-Nameki
(Caltech)

IPMU Tokyo, 19. June 2008

N. Gromov, SSN, P. Vieiera, arxiv: 0801.3671, 0806/7.nnnn [hep-th]
Motivations

Goal: Establishing AdS/CFT quantitative tests, not relying on non-renormalization theorems

Obstructions: Recap:

\[d = 4, \mathcal{N} = 4, SU(N_c) \text{ SYM} \]

\[g_Y M, \quad \lambda = g_Y^2 N_c \]

Scaling dimensions \(\Delta \) of GIOs

Planar limit

\begin{align*}
\lambda & \ll 1 \\
\frac{1}{\sqrt{\lambda}} & - \text{corrections} \\
\lambda & = \infty
\end{align*}

Non-interacting strings

\[\lambda \gg 1 \]

\[\alpha' \text{-corrections} \]

\[\alpha' = 0 \text{ (classical limit)} \]
Reasonable goal: Solving planar AdS/CFT (spectral AdS/CFT)

Immense progress: AdS/CFT as a one-parameter family of integrable models

\(\mathcal{N} = 4 \) dilatation operator

\(AdS_5 \times S^5 \) string energies

\[
\text{Diagonalize } \mathcal{D} \text{ acting on } \quad \text{Supercoset } \frac{PSU(2,2|4)}{SO(4,1) \times SO(5)}
\]

\[
\text{Tr}(ZWWZDZ \cdots) \quad \text{sigma-model}
\]

\[
\downarrow \quad \downarrow
\]

Integrability

\(\text{Diagonalize integrable } \quad \text{2d integrable QFT on cylinder} \)

\(\text{Spin-chain Hamiltonian} \quad \text{All-loop Bethe Ansatz and S-matrix } S = S(\lambda) \)

[Beisert, Hernández, López] [Beisert, Eden, Staudacher]

\[
\Rightarrow \Delta(\lambda) = E(\lambda)
\]
Large charge states:

- In agreement with 4-loop anomalous dims
- In agreement with α' corrections to spinning strings
- Interpolates correctly from $\lambda = 0$ to $\lambda = \infty$

Shortcomings:

- Integrability? S-matrix program assumes factorized scattering
 $\mathcal{N} = 4$: 1-loop [BS], 2-loop [Zwiebel]
 $AdS_5 \times S^5$: classical [Bena, Polchinski, Roiban], 1-loop [Berkovits], [Mikhailov, SSN]
- S-matrix describes asymptotic spectrum
 $\mathcal{N} = 4$ SYM: wrapping effects, breakdown for length $L \leq |\text{loops}|$
 4-loop Konishi: [KLRSV], [Fiamberti, Santambrogio, Sieg, Zanon], [Keeler, Mann]
 $AdS_5 \times S^5$: mismatch with α'-corrections to string energies
 α'-corrections: [SSN], [SSN, Zamaklar, Zarembo], [Janik, Lukowski], [Gromov, SSN, Vieiera]

Need to find systematic framework to include these finite-volume effects!
Plan

1. Introduction

2. $\mathcal{N} = 4$ SYM and integrability
 - How to use spin-chains to compute anomalous dimensions
 - All-loop spin-chain and S-matrix
 - Wrapping effects

3. $AdS_5 \times S^5$ and finite-size effect
 - S-matrix
 - Finite-size effects and Lüscher formulas

4. Efficient precision quantization in $AdS_5 \times S^5$
 - Classical curve and precision quantization
 - Quantization

5. Conclusions and Outlook
2. $\mathcal{N} = 4$ SYM and integrability

Dilatation operator \mathcal{D}, with eigenvalues Δ

$$O(x)O(y) \sim \frac{C}{|x - y|^{2\Delta}}$$

Formally diverges. Wave-function renormalization $O^a_{\text{ren}} = Z^a_{\text{bare}} O^b_{\text{bare}}$

Determines anomalous dimension matrix by $\frac{dZ}{d\log \Lambda} Z^{-1}$. Eigenvectors are linear combinations that are multiplicatively renormalizable.

Consider $\mathfrak{su}(2)$ sector: $Z = \Phi_1 + i\Phi_2$ and $W = \Phi_3 + i\Phi_4$

$$O = \text{Tr}(ZZWZ \cdots WZWWZ \cdots W) + \text{permutations}$$

How to solve a hard problem? Map it to a known, solved problem!

Key insight of [Minahan, Zarembo]:

$$\text{Tr}(ZWZWWZWWZWZWWZW) \rightarrow \text{spin-chain}:
Then the dilatation operator at one-loop acts precisely like the Heisenberg XXX-Hamiltonian:

\[
\text{Tr}(ZZW \cdots W) \quad \rightarrow \quad |↑↑↓ \cdots ↓\rangle
\]

\[
\mathcal{D} \quad \rightarrow \quad H_{XXX} = \sum_{i=1}^{L} (1 - P_{i,i+1})
\]

"Nearest neighbour interaction"

\[
P_{i,i+1}(V_i \otimes V_{i+1}) = V_{i+1} \otimes V_i
\]

Groundstate: ferrogmanetic \(Tr Z^L\).

Diagonalization of Heisenberg Hamiltonian is a well-studied problem: S-matrix and Bethe ansatz.
2 → 2 scattering

\(W = \) excitation (magnon, \(\downarrow \)) with momentum \(p \) on the ground state
\(\text{Tr} Z^L = | \uparrow \ldots \uparrow \rangle \).

Position space wave function

\[
|\Psi\rangle = \sum_{1 \leq x < y \leq L} \psi(x, y) |ZZWZ\cdots ZWZ\cdots Z\rangle
\]

Ansatz:

\[
\psi(x, y) = e^{ipx + iqy} + S(p, q)e^{ipy + qx}
\]

Schrödinger equation for \(H_{XXX} \) yields:

\[
E_{XXX} = 4 \sin^2(p/2) + 4 \sin^2(q/2) \quad \text{and} \quad S(p, q) = -\frac{1 + e^{i(p+q)} - 2e^{ip}}{1 + e^{i(p+q)} - 2e^{iq}}
\]
Factorized scattering

• 2 → 2 scattering:

\[p + q = p' + q' \]
\[E(p) + E(q) = E(p') + E(q') \]
\[\Rightarrow (p', q') = (p, q) \text{ or } (q, p) \]

• \(n \rightarrow n \) scattering:

If there are \(n \) integrals of motion \(I_i \) then the same argument gives

\[\sum_k p_k = \sum_k p'_k \]
\[\sum_k I_i(p_k) = \sum_k I_i(p'_k) \]
\[\Rightarrow p'_k = p_{\sigma(k)} \text{ for } \sigma \in S_n \]

In fact, we then have factorized scattering \(\sigma = \Pi_j \tau_j \).

In particular in models with infinite number of conserved charges the scattering is determined once \(E(p) \) and \(S(p, q) \) is known!
Periodicity and Bethe ansatz

\[\psi(x, y) = \psi(y, x + L) \Rightarrow \]

\[e^{ipL} = S(p, q) \quad e^{iqL} = S(p, q) \]

For general number of \(M \) excitations: Bethe equations

\[e^{ip_i L} = \prod_{j \neq i}^M S(p_i, p_j) \]

Setting \(u_k = 1/2 \cot(p_k/2) \) (Bethe roots) they take the usual form

\[\left(\frac{u_k + i/2}{u_k - i/2} \right)^L = \prod_{i=1}^M \frac{u_k - u_j + i}{u_k - u_j - i} \]

and the energy is

\[E = \sum_{k=1}^M \frac{1}{u_k^2 + 1/4} \]
All-loop S-matrix

Amazingly this can be generalized to all operators of $\mathcal{N} = 4$ and asymptotically to all loops.

Loop-order: L loops gives L^{th} neighbour interacting spin-chain

Generic states: $\text{Tr}(ZWZYZWWWDZZ \cdots)$

Constituents: $\mathfrak{psu}(2, 2|4)$ field strength multiplet: $D^k \Phi_i, D^k \Psi, D^k F$

S-matrix picture: fix vacuum $\text{Tr} Z^L$ (L large), other fields \equiv excitations

Residual symmetry: $(\mathfrak{su}(2|2) \oplus \mathfrak{su}(2|2)) \rtimes \mathbb{R}$

$S_{\mathfrak{su}(2|2)}$-matrix: $S^f_{i_1 i_2}$, where i_1, i_2, f_1, f_2 label each a $(2|2)$ representation.
\(su(2|2) \oplus su(2|2) \) fixes the S-matrix up to a scalar dressing factor \(\sigma \) \[\text{Beisert}\]

\[
S(p_k, p_j) = S_{su(2|2)}(p_k, p_j) S_{su(2|2)}(p_k, p_j) \sigma(p_k, p_j)
\]

Central charge determines dispersion relation

\[
\Delta - J = \sum_k \epsilon(p_k) = \sum_k \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p_k}{2}}
\]

Dressing factor: is fixed by crossing symmetry \[\text{Janik}\] and "experiments". Finally to determine energy of states we need a quantization condition on the momenta \(p_k \), aka Bethe ansatz equations

\[
e^{ip_i L} = \prod_{k \neq i} S(p_k, p_i)
\]

Plan of action:
1. Determine solutions \(p_k \) to the Bethe equations
2. Plug into \(\sum_k \epsilon(p_k) \)
3. Finished
The S-matrix approach is only valid \textit{asymptotically}, i.e. when free states can be prepared. \textbf{Wrapping interactions} violate this

\[
\text{spin-chain length } L \leq |\text{Loops}|
\]

Exemplified by length 4 Konishi-operator $\text{Tr}(\uparrow\downarrow\uparrow\downarrow - \uparrow\uparrow\downarrow\downarrow)$ at 4-loops:
up to 3-loops $\text{BAE} = \text{Feynman computation} \ [\text{KLOV}]$

\[
\Delta = 4 + 12g^2 - 48g^4 + 336g^6 + \Delta^{(4)}g^8 + \cdots
\]

$g^2 = \lambda/16\pi^2$, but at 4-loops:

\[
\Delta_{\text{BAE}}^{(4)} \neq \Delta^{(4)}_{\text{[KLRSV]}} \neq \Delta^{(4)}_{\text{[Fiamberti, Santambrogio, Sieg, Zanon]}} \neq \Delta^{(4)}_{\text{[Keeler, Mann]}}
\]

So far inconclusive, but appearance of $\zeta(5)$ in all explicit computations hint at invalidity of Bethe ansatz.

We will now see a similar phenomenon in the $\text{AdS}_5 \times S^5$ string, and propose some systematic framework to study these effects.
3. \(AdS_5 \times S^5 \) and finite-size effects

Take all-loop S-matrix seriously and assume it describes strong coupling, i.e. string dynamics as well.

- Light-cone Metsaev-Tseytlin action has \(su(2|2) \oplus su(2|2) \)
 \(\Rightarrow \) S-matrix equally fixed by Beisert’s analysis.

- All-loop dressing factor \(\sigma \) engineered such that
 \[E_{\text{string}} = \sqrt{\lambda} E_0 + E_1 + O(1/\sqrt{\lambda}) \]
 agrees in infinite volume

However: similar mismatch between string energies and BAE prediction.

Length of the string

Consider large \(J = su(2) \) spin solutions. Uniform light-cone gauge:

\[x^+ = \tau, \quad p_+ = 1 \Rightarrow P^+ = \frac{\sqrt{\lambda}}{2\pi} \int_0^L d\sigma = \text{Length}. \]

Light-cone coordinate \(p_+ = p_\phi \)

\[\Rightarrow \quad \text{Length} = \frac{P^+}{\sqrt{\lambda}} = \frac{J}{\sqrt{\lambda}} \equiv g \]

At each order in \(1/\sqrt{\lambda} \):

\[E_i = E_i(g) \]
Finite-size corrections 1: Spinning String energies

Strings spinning on $\mathbb{R} \times S^3$
Strings spinning on $AdS_3 \times S^1$

String energies: $E_0(j)$ agrees with BAE. One loop-shift is determined by sum over fluctuation frequencies [Frolov, Tseytlin, Tirziu,...]

\[E_1(j) = \frac{1}{2} \sum_{n \in \mathbb{Z}} \sum_{I} (-1)^{F_I} \Omega^{I}_n(j) \]

Expansion in j is

\[E_1(j) = \sum_{n} a_n \frac{1}{j^n} + \sum_{n} b_n e^{-2\pi j n} \]

and exponential terms are absent in BAE [SSN],[SSN, Zamaklar, Zarembo].
Finite-size corrections 2: Giant Magnons

GM = analog of single excitation on the spin-chain.

Classical solution of $\mathbb{R} \times S^2$ sigma-model [Hofman, Maldacena]

- $\Delta - J = \frac{\sqrt{\lambda}}{2\pi} \int_0^L d\sigma \mathcal{H}$
- $p = -\int_0^L d\sigma p_i x^i = \text{charge associated to translational invariance in } \sigma$

Determine $\Delta - J = \epsilon(p)$ yields dispersion relation

[Hofman, Maldacena], [Arutyunov, Frolov, Zamaklar], [Hatsuda, Suzuki], [Minahan, Sax]

\[
L = \infty : \quad \Delta - J = \epsilon_\infty(p) = \frac{\sqrt{\lambda}}{\pi} \left| \sin \frac{p}{2} \right| = \epsilon(p)_{O(\sqrt{\lambda})}
\]

\[
L < \infty : \quad \Delta - J = \epsilon_L(p) = \frac{\sqrt{\lambda}}{\pi} \left| \sin \frac{p}{2} \right| \left(1 - \frac{4}{e^2} \left| \sin^3 \frac{p}{2} \right| e^{-2\pi \sin \frac{p}{2}} + \cdots \right)
\]

This is a classical effect, i.e. corrects E_0 by finite-volume terms.
General structure is

\[\epsilon(p) - \epsilon_\infty(p) = \sqrt{\lambda} \delta \epsilon_{\text{classical}}(p) + \delta \epsilon_{1-\text{loop}}(p) + \frac{1}{\sqrt{\lambda}} \delta \epsilon_{2-\text{loop}} + O(1/\lambda). \]

So far:

\[\sqrt{\lambda} \delta \epsilon_{\text{classical}}(p) = \sqrt{\frac{\lambda}{\pi}} \left| \sin \frac{p}{2} \right| \left(1 - \frac{4}{e^2} \left| \sin \frac{p}{2} \right| e^{-2\pi \frac{g}{\sin p/2}} \right) \]

Computing the one-loop \(\alpha' = 1/\sqrt{\lambda} \) correction we find corrections of the order \(e^{-2\pi g} \) [Gromov, SSN, Vieira]

\[\delta \epsilon_{1-\text{loop}}(p) = a_{1,0} e^{-2\pi g} + \sum_{n,m} a_{n,m}(\Delta) \exp (-n2\pi g) \exp \left(-m2\pi \frac{g}{\sin p/2} \right) \]

What is the physical interpretation of these corrections?
Lüscher formulas [Lüscher], [Klassen, Melzer]

Field-theoretic approach to compute leading finite-volume effects. Idea:
Infinite volume 2-dim field theory, Euclidean Green’s function for
elementary excitation/magnon $G_a(p)$ is

$$G_a(p) = \frac{1}{\epsilon_E^2 + \epsilon(p)^2 - \Sigma_a(p)}$$

ϵ_E = Euclidean energy, $\Sigma_a(p)$ = self-energy. Fix Res $\epsilon_E^2 G(p) = 1$
On-shell: $\epsilon_E^2 = \epsilon(p)^2$ and $\Sigma = \Sigma' = 0$.

In **finite volume** L, the self-energy $\Sigma_L(p)$ gets corrected by:
On the cylinder: average position space Green's function over \(\sigma \rightarrow \sigma + nL \). Momentum space, leading correction will be \(e^{ipL} \).

Leading order correction arises from keep only \(n = 1 \). E.g.

\[
= \sum_b \int_{\mathbb{R}} \frac{d^2 q}{(2\pi)^2} e^{iq^1L} G_{ab}(p) \Gamma^{aabb}(p, -p, q, -q)
\]

Move contour so that exponential suppresses integral. Picks up pole \(q^1 = q^* \) of \(G \), i.e. puts lines on-shell!

\[
= \sum_b \int \frac{dq^0}{2\pi} \frac{i}{\epsilon^2(q^*)} e^{-\epsilon q^* L} \Gamma^{aabb} = \sum_b \Gamma_{abab}
\]
Including all channels for particle with flavour a

\[= \int \frac{dq^0}{2\pi} \frac{i}{\epsilon_2(q^*)^2} e^{-|q^*|L} \sum_b G_{abab}(p, -p, q, -q)\]

G_{abab} is the amputated, connected 4-point function.

Finite-size correction to dispersion relation $\delta\epsilon_L$ follows by

\[\epsilon_E^2 + \epsilon(p)^2 - \Sigma_L(p) = 0, \text{ where now on-shell } \epsilon_E^2 + (\epsilon(p) + \delta\epsilon_p)^2 = 0. \text{ Thus} \]

\[\delta\epsilon_L = -\frac{1}{2\epsilon(p)} \Sigma_L(p).\]

In integrable theories, this is related to the S-matrix. This yields the Lüscher F-term

\[\delta\epsilon^F(p) = -\frac{1}{2\epsilon(p)} \Sigma_L(p) = -\int_{\mathbb{R}} \frac{dq^0}{2\pi} \text{ (kin. factors) } e^{-iq^*L} \sum_b (-1)^{F_b} \left(S_{ba}(q^*, p) - 1 \right)\]
Extra contribution: first integral has both $G_b(q)$ and $G_c(q+p)$, thus neglected one term

$$\delta \epsilon^\mu(p) = -i \text{ (kin. factors)} e^{-i\tilde{q}^* L} \text{Res}_{q=\tilde{q}} \sum_b (-1)^F_b \left(S_{ba}^{ba}(q^*, p) - 1 \right)$$

F-term is virtual particle correcting Σ. μ-term from bound state poles of the S-matrix.

For general dispersion relations derived by [Janik, Lukowski].
We can evaluate the Lüscher terms and compare them with the semi-classical string computation.

- Lüscher (µ-term) reproduces $\delta\epsilon_{\text{classical}}$ \cite{Janik, Lukowski}
 \equiv contributions from bound state poles

- Lüscher (F-term) reproduces $a_{1,0}e^{-2\pi j}$ correction at one-loop
 \cite{Gromov, SSN, Vieira}
 \equiv corrections due to virtual particles

- Subleading: general $a_{n,m}$ term in

 \[\delta\epsilon_{\text{1-loop}}(p) = a_{1,0}e^{-2\pi j} + \sum_{n,m} a_{n,m}(\Delta) \exp(-n2\pi j) \exp\left(-m2\pi \frac{g}{\sin p/2}\right)\]

 \equiv n virtual particle loops and m splits into on-shell particles.

We will show next how to actually derive a large portion of these terms exactly from the string sigma-model, using the integrable structure.
Summary so far

1. S-matrix and Bethe ansatz seems to be correct to all orders in λ, as long as spin-chain/string are long enough

2. $\mathcal{N} = 4$: wrapping interactions spoil validity of Bethe ansatz if loop order is larger or equal to the length of the operator

3. $AdS_5 \times S^5$: exponentially suppressed terms (in j, i.e. length of the string) appear in the dispersion relation of the Giant Magnon and spinning string energies – classically and at one-loop

4. Systematic treatment of leading exponential terms by Lüscher formulas
4. Efficient Precision quantization in $AdS_5 \times S^5$

Semi-classical quantization can be performed directly in the sigma-model [Frolov, Tseytlin, Tirziu...], and from this approach one can derive the exponential terms [SSN] ⇒ very tedious.

Find efficient way to compute finite-volume terms exactly! Will teach us how to generalize/modify/extend Bethe ansatz equations.

Explicitly use classical/semi-classical integrability of the string sigma-model:

\[\infty \# \text{ conserved charges of the } AdS_5 \times S^5 \text{ string} \]
⇒ classical integrability [Bena, Polchinski, Roiban]

Aim: Determine classical solutions and their energies, and then semi-classically quantize as generically as possible.
Algebraic Curve

Classical integrability is ensured, if EOM can be written as the zero-curvature equation of a connection $J(x)$

$$dJ(x) - J(x) \wedge J(x) = 0$$

$x \in \mathbb{C}$ spectral parameter. Monodromy matrix

$$\Omega(x) = P \exp \left(\int A(x) \right)$$

Conserved charges follow by expanding $\text{Tr}\Omega(x)$. Eigenvalues: $e^{ip_i(x)}$ parametrize an algebraic curve. Essentially, because they satisfy the characteristic polynomial equation.

Point: classical solutions \leftrightarrow algebraic curves
Principal chiral model

\[g : \Sigma \to G = SU(2), SL(2) \]

[Kazakov, Marshakov, Minahan, Zarembo]

Currents: \[j_\pm = g^{-1} \partial_\pm g \]

E.O.M.: \[\partial_+ j_- + \partial_- j_+ = 0 \]
[\[\partial_+ j_- - \partial_- j_+ + [j_+, j_-] = 0 \]

Virasoro constraint: \[-\frac{1}{2} \text{Tr} j_\pm^2 = \kappa^2 \]

Linear system/Lax pair: \[\mathcal{L} = \partial_\sigma + \frac{1}{2} \left(\frac{j_+}{1-x} - \frac{j_-}{1+x} \right) \]
[\[\mathcal{M} = \partial_\tau + \frac{1}{2} \left(\frac{j_+}{1-x} + \frac{j_-}{1+x} \right) \]

E.O.M. \iff \[\partial_\sigma \mathcal{M}_\tau - \partial_\tau \mathcal{L}_\sigma + [\mathcal{M}_\tau, \mathcal{L}_\sigma] = 0 \]
Algebraic curve

Monodromy matrix

\[\Omega(x) = P \exp \left(- \int_0^{2\pi} d\sigma L_\sigma \right) = \begin{pmatrix} e^{ip(x)} & 0 \\ 0 & e^{-ip(x)} \end{pmatrix} \in SU(2) \]

\(\text{Tr} \Omega = 2 \cos(p(x)) \) independent of contour \(\Rightarrow p(x) \) is conserved.

Quasi-momenta \(p(x) \) are holomorphic in \(x \) except for poles at \(x = \pm 1 \) and branch-cuts \(C_k \).

- \(\text{Det} \Omega(x) = 1 \iff e^{ip(x^+)}e^{ip(x^-)} = 1 \) for \(x \in C_k \)
 i.e. for \(n_k \in \mathbb{Z} \)

\[p(x) = p(x^+) + p(x^-) = 2\pi n_k, \quad z \in C_k. \]

- Filling fraction= A-cycle integral
 \[S_{ij} = \oint_{C_{ij}} \left(1 - \frac{1}{x^2} \right) p_i(x) \]
$AdS_5 \times S^5$ superstring algebraic curve

$\mathfrak{psu}(2,2|4)$ "mulatta" Dynkin diagram gives rise to $4|4$ 7-sheeted Riemann surface: $\otimes =$ fermionic roots.

S^5: $(\hat{1}, \tilde{3}), (\hat{1}, \tilde{4}), (\tilde{2}, \tilde{3}), (\tilde{2}, \tilde{4})$

AdS_5: $(\hat{1}, \tilde{3}), (\tilde{1}, \hat{4}), (\tilde{2}, \tilde{3}), (\tilde{2}, \tilde{4})$

Fermions: $(\tilde{1}, \hat{3}), (\hat{1}, \tilde{4}), (\tilde{2}, \hat{3}), (\hat{2}, \tilde{4})$

$(\hat{1}, \tilde{3}), (\hat{1}, \tilde{4}), (\tilde{2}, \tilde{3}), (\tilde{2}, \tilde{4})$
Quasimomenta:

\{ \tilde{p}_1(x) \mid \hat{p}_1(x), \hat{p}_2(x), \tilde{p}_2(x), \hat{p}_3(x), \tilde{p}_3(x), \hat{p}_4(x), \tilde{p}_4(x) \}

At the cuts/fermionic poles connecting sheets \((ij)\) "classical BAE"

\[\phi_i(x) - \phi_j(x) = 2\pi n_{ij} \]

Asymptotics for \(x \to \infty\): connection becomes Noether currents, so \(p_i\) are related to global \(\mathfrak{psu}(2,2|4)\) charges, in particular the classical energy \(E\):

\[
\begin{pmatrix}
\hat{p}_1 \\
\hat{p}_2 \\
\hat{p}_3 \\
\hat{p}_4 \\
\tilde{p}_1 \\
\tilde{p}_2 \\
\tilde{p}_3 \\
\tilde{p}_4
\end{pmatrix}
\sim \frac{2\pi}{x\sqrt{\lambda}}
\begin{pmatrix}
+E - S_1 + S_2 \\
+E + S_1 - S_2 \\
-E - S_1 - S_2 \\
-E + S_1 + S_2 \\
+J_1 + J_2 - J_3 \\
+J_1 - J_2 + J_3 \\
-J_1 + J_2 + J_3 \\
-J_1 - J_2 - J_3
\end{pmatrix}
\]

Other constraints:

- Poles at \(x = \pm 1\): synchronized by Virasoro constraint.

- \(x \to 1/x\) acts as automorphism of \(\mathfrak{psu}(2,2|4)\):

\[p_{1,2,3,4}(1/x) \to -p_{2,1,4,3}(x) \]
Quantizing the algebraic curve

Classical curve. Add small fluctuations, i.e. poles. Determine where they are localized and what the backreaction is,

\[p_i(x) \to p_i(x) + \delta_n^{(ij)} p_i(x) \]

A single excitation of flavour \((ij)\) and mode number \(n\) is defined by shifting the filling fractions \(S_{ij} \to S_{ij} + 1\). This fixes [Beisert, Freyhult], [Gromov, Vieira]

\[\delta_n^{(ij)} p_i(x) \sim \frac{\alpha(x_n^{ij})}{x - x_n^{ij}}, \quad \alpha(x) = \frac{4\pi}{\sqrt{\lambda}} \frac{x^2}{x^2 - 1} \]

The position of the fluctuation pole \(x_n^{ij}\) is determined by classical BAE

\[p_i(x_n^{ij}) - p_j(x_n^{ij}) = 2\pi n_{ij} \]
Asymptotics at infinite are

$$\begin{pmatrix}
\delta \hat{p}_1 \\
\delta \hat{p}_2 \\
\delta \hat{p}_3 \\
\delta \hat{p}_4 \\
\end{pmatrix}
\sim \frac{4\pi}{x\sqrt{\lambda}}
\begin{pmatrix}
+\delta \Delta /2 & +N_{14} + N_{1\bar{3}} & +N_{\bar{1}3} + N_{14} \\
+\delta \Delta /2 & +N_{2\bar{3}} + N_{24} & +N_{24} + N_{23} \\
-\delta \Delta /2 & -N_{2\bar{3}} - N_{1\bar{3}} & -N_{1\bar{3}} - N_{2\bar{3}} \\
-\delta \Delta /2 & -N_{14} - N_{24} & -N_{24} - N_{14} \\
\end{pmatrix}
$$

- Synchronized poles at $x = \pm 1$
- $x \to 1/x$
- close to cuts: $\delta p \sim \partial_x p$

General strategy to determine one-loop energy shift:

1. Make ansatz for δp_i that satisfies correct asymptotics and poles at x_{n}^{ij}, and $x = \pm 1$

2. Solve linear equations for undetermined constants and $\delta \Delta$
Efficient quantization of the algebraic curve

TBF\[Gromov, SSN, Vieira\]

The above procedure is already more efficient than semi-classical sigma-model approach à la Frolov-Tseytlin.

Can do better! Why? For more complicated solutions this is crucial to obtain exact, finite-size spectrum. E.g. GM as 2-cut solution.

Use $x \rightarrow 1/x$ symmetry, then from one frequency in S^3 and one in AdS_5

$$\tilde{\Omega}_n = \Omega_n^{\hat{2}\hat{3}}, \quad \hat{\Omega}_n = \Omega_n^{\hat{2}\hat{3}}$$

we can determine all others as linear combinations.

NB: this is different from quantization in subsectors!

Let us consider an example.
Simple $S^3 \times \mathbb{R}$

Classical energy: $\kappa = \frac{E}{\sqrt{\lambda}} = \sqrt{j^2 + m^2}$. J is spin, m is winding on S^3. The classical solution is determined by

$$p_1 = p_2 = -p_3 = -p_4 = \pm \frac{2\pi x}{x^2 - 1} \kappa$$

$$p_1 = + \frac{2\pi x}{x^2 - 1} \sqrt{j^2 + \frac{m^2}{x^2}}$$

$$p_2 = + \frac{2\pi x}{x^2 - 1} \sqrt{j^2 + m^2 x^2} - 2\pi m$$

$$p_3 = - \frac{2\pi x}{x^2 - 1} \sqrt{j^2 + m^2 x^2} + 2\pi m$$

$$p_4 = - \frac{2\pi x}{x^2 - 1} \sqrt{j^2 + \frac{m^2}{x^2}}.$$

Check: Asymptotics, poles, $x \to 1/x$.
Input fluctuations: $\Omega_n = \Omega(x_n)$

$$\hat{\Omega}^{\tilde{3}\tilde{3}}(x_n) = \frac{2m + n\tilde{2}\tilde{3}}{\kappa x_n} = \frac{2m + \frac{p_2 - p_3}{2\pi}}{\kappa x_n} = \frac{2\sqrt{m^2 x_n^2 + g^2}}{(x_n^2 - 1) \sqrt{m^2 + g^2}}$$

$$\hat{\Omega}^{\tilde{4}\tilde{4}}(x_n) = \frac{2}{x_n^2 - 1}$$

Tracing back the $x \to 1/x$ symmetry of the quasi-momenta and δp, we can show that off-shell frequencies $\Omega(x)$, where $\Omega(x)|_{x=x_n} = \Omega_n$ satisfy

$$\Omega^{\tilde{1}\tilde{4}}(x) = -\Omega^{\tilde{3}\tilde{3}}(1/x) + \text{const.} , \quad \Omega^{\tilde{4}\tilde{4}}(x) = -\Omega^{\tilde{3}\tilde{3}}(1/x) + \text{const.}$$

Remaining bosonic fluctuations are obtained by linear combinations of the off-shell frequencies

$$\Omega^{ij}(y) = \frac{1}{2} \left(\Omega^{ii'}(y) + \Omega^{jj'}(y) \right)$$

where

$$(\tilde{1}, \tilde{2}, \tilde{1}, \tilde{2}, \tilde{3}, \tilde{4}, \tilde{3}, \tilde{4})' = (\hat{1}, \hat{3}, \hat{4}, \hat{3}, \hat{2}, \hat{1}, \tilde{2}, \tilde{1}).$$
Applied to the $S^3 \times \mathbb{R}$ solution, we obtain all the well-known frequencies only in terms of the frequencies $\tilde{\Omega}$ and $\hat{\Omega}$

$$\Omega^{14}(y) = -\Omega^{23} (1/y) - 2 \frac{\partial E}{\partial j}$$

$$\Omega^{24}(y) = \Omega^{13}(y) = \frac{1}{2} \left(\Omega^{23}(y) + \Omega^{14}(y) \right) = \frac{1}{2} \left(\Omega^{23}(y) - \Omega^{23} (1/y) \right) - \frac{\partial E}{\partial j}$$

$$\Omega^{\hat{1}4}(y) = -\Omega^{\hat{2}3} (1/y) - 2$$

$$\Omega^{\hat{2}4}(y) = \Omega^{\hat{1}3}(y) = \frac{1}{2} \left(\Omega^{\hat{2}3}(y) + \Omega^{\hat{1}4}(y) \right) = \frac{1}{2} \left(\Omega^{\hat{2}3}(y) - \Omega^{\hat{2}3} (1/y) \right) - 1 - \frac{\partial E}{\partial j}$$

$$\Omega^{\hat{2}4}(y) = \Omega^{\hat{1}3}(y) = \frac{1}{2} \left(\Omega^{\hat{2}3}(y) + \Omega^{\hat{1}4}(y) \right) = \frac{1}{2} \left(\Omega^{\hat{2}3}(y) - \Omega^{\hat{2}3} (1/y) \right) - \frac{\partial E}{\partial j}$$

$$\Omega^{\hat{1}4}(y) = \Omega^{\hat{1}4}(y) = \frac{1}{2} \left(\Omega^{\hat{1}4}(y) + \Omega^{\hat{1}4}(y) \right) = \frac{1}{2} \left(-\Omega^{\hat{2}3} (1/y) - \Omega^{\hat{2}3} (1/y) \right) - 1 - \frac{\partial E}{\partial j}$$

$$\Omega^{\hat{2}3}(y) = \Omega^{\hat{2}3}(y) = \frac{1}{2} \left(\Omega^{\hat{2}3}(y) + \Omega^{\hat{2}3}(y) \right)$$
Summary: Efficient precision quantization

Finally the energy shift is computed by

- Solve for one $\tilde{\Omega}$ and one $\hat{\Omega}$
- Solve for the pole positions x_{n}^{ij} (trivial)

\[p_i(x_{n}^{ij}) - p_j(x_{n}^{ij}) = 2\pi n_{ij} \]

- Evaluating the plug-in formula above for the off-shell frequencies with arbitrary polarization $\Omega^{ij}(x)$ and $x = x_{n}^{ij}$ (trivial)

- $\delta\Delta = \sum_{n \in \mathbb{Z}} \sum_{ij} (-1)^{F_{ij}} \Omega_{n}^{ij}$ (finished)

Application: GM as a 2-cut solution. Subleading exponential corrections.

In this way: get complete control over exponential terms at one-loop

\[\delta\Delta = \sum_{n \in \mathbb{Z}} \sum_{ij} (-1)^{F_{ij}} \Omega_{n}^{ij} = \int dncot(\pi n) \sum_{ij} (-1)^{F_{ij}} \Omega_{n}^{ij} \]

and expanding cotangent.
5. Wrapping up: Conclusions and Outlook

Summary:

- **Finite-size effects** are one crucial missing piece to be understood on the way to solve planar AdS/CFT
- 2-d field theory approach for the string: **Lüsch}er formulas** reproduce exponential terms in string energies
- Exponential terms at one-loop in α': efficient precision

Future directions:

- Application of **Lüscher formulas to Konishi**
- **Beyond leading exponential corrections:**
 From the algebraic curve: no problem at one-loop.
 Correct BAE to incorporate these
- **TBA?**
- Find more **formal evidence for integrability**
Thank you