Systems with N degrees of freedom

Two Particle Hilbert Space

Consider two particles moving in 1-dimension. System described classically by \((x_i, p_i)\) and \((x'_i, p'_i)\).

The rule for quantizing this system is to promote these classical variables to Hermitian operators \((X_i, P_i)\), \((X'_i, P'_i)\) obeying the canonical commutation relation

\[
[X_i, P_j] = i \hbar \delta_{ij}, \quad i, j \in \{1, 2\}
\]

\[
[X_i, X_j] = [P_i, P_j] = 0
\]

Usually one adopts coordinate basis consisting of ket

\(|x_i, x'_i \rangle\) and has simultaneous eigenstates of the
symmetry operator \(X_i, X'_i\)

\(X_i |x_i, x'_i \rangle = x_i |x_i, x'_i \rangle\)

\(X'_i |x_i, x'_i \rangle = x'_i |x_i, x'_i \rangle\)

and are normalized as

\[
\langle x'_i, x'_i | x_i, x_i \rangle = \delta(x'_i - x_i) \delta(x'_i - x_i)
\]

\[dx_i \text{ this gives us } \sqrt{x_i} \]

\(|\psi\rangle \rightarrow |x_i, x'_i \rangle |\psi\rangle = \Psi(x_i, x'_i)\)

\(x_i \rightarrow x_i\)

\(p_i \rightarrow \frac{-i\hbar}{\partial x_i}\)
We consider
\[P(x_1, x_2) = |\Phi(x_1, x_2)|^2 \]
as probability density for finding particle 1 at \(x_1 \) and particle 2 at \(x_2 \), provided we normalize \(\Phi \) havint
\[I = \langle \Psi | \Phi \rangle = \int |\langle x_1, x_2 | \Psi \rangle|^2 dx_1 dx_2 = \int P(x_1, x_2) dx_1 dx_2 \]

V102 as a Direct Product Space

There is another way to arrive at one Hilbert space. Consider any spin of 2 particles described classically by \(|x_1, p_1 \rangle \langle x_2, p_2| \). If we end up quantum defying
just of particle 1 we have operator \(\hat{X}_1 \), \(\hat{P}_1 \), satisfying
\[[X_1, P_1] = i \hbar \]
The operators \(|x \rangle \) form a complete (orthonormal) basis. Operator \(X_1, P_1, S_z = S_z(x_1, p_1) \) act on this Hilbert space which we call \(V_1 \).

And particle 2 same deal.
\[[X_2, P_2] = i \hbar \]

Equally, \(|x_2, p_2 \rangle \) form another basis too. We end up having \(X_2, P_2, S_z(x_2, p_2) \) act on the space.
Now we have a vector \(|x_1\rangle \) given \(x_1 \) spatial
2-level spin-1/2. Let's call smaller state

\(|x_{1'}\rangle \otimes |x_{1''}\rangle \rightarrow \) \(\text{partial 1 of} \ x_i \)

\(|x_{1'}\rangle \otimes |x_{1''}\rangle \) is called direct product of \(V_1 \) cell

\(\text{with} \ V_2 \). \(\text{Direct product of vectors in different}

\(\text{space} \ V_1 \) and \(V_2 \). Direct product is a linear

operation.

\[
(\langle x_1 | + \langle y_1 |) \otimes (\beta |z_2 \rangle
\]

\[
= \langle \beta | x_{1'} \rangle \otimes |x_{1''}\rangle + \langle \beta | x_{1'} \rangle \otimes |x_{1''}\rangle
\]

Set of all vectors \(|x_{1'}\rangle \otimes |x_{1''}\rangle \) form a basis for

a Hilbert space we call \(V_1 \otimes V_2 \). The direct

product of \(V_1 \) with \(V_2 \). Dimensionality of \(V_1 \otimes V_2
\)

is product of dimensionality of \(V_1 \) with

dimensionality of \(V_2 \).

Note coordinate basis \(|x_{1'}\rangle \otimes |x_{1''}\rangle \) is just one possible

basis. Could also use \(|f \rangle \otimes |h \rangle \) a more generic

\(|w, \rangle \otimes |v, \rangle \) for any Hermitian space \(\mathcal{H} \). Although

vectors defined for \(\text{spin} \) based space not any vector

space is of this form. In contrast

\[
|f \rangle = |x_{1'}\rangle \otimes |x_{1''}\rangle + |x_{1''}\rangle \otimes |x_{1'}\rangle
\]

cannot be used as \(|f \rangle \otimes |f \rangle \) when \(|f \rangle \in V_1 \)

and \(|f \rangle \in V_2 \). Inner product of \(|x_{1'}\rangle \otimes |x_{1''}\rangle

with \(|x_{1'}\rangle \otimes |x_{1''}\rangle \) is

\[
\langle x_{1'} | \otimes \langle x_{1''} | (| x_{1'} \rangle \otimes | x_{1''} \rangle) = \langle x_{1'} | x_{1'} \rangle \langle x_{1''} | x_{1''} \rangle
\]
Since any $\mathbf{x} \in \mathbb{W}_1 \mathbb{W}_2$ can be expressed in terms of $\mathbb{W}_1 \mathbb{W}_2$, let us define some product on both spaces. Now, define $X_1^{(1) \otimes (1)}$ analogously $X_i^{(1)}$ in the product space.

g\left(1^{(1)} \otimes 1^{(1)}\right) \mathbf{x}_1 \otimes \mathbf{x}_2 = \mathbf{x}_1 \otimes \mathbf{x}_2

g\left(1^{(1)} \otimes 1^{(1)}\right) \mathbf{x}_1 \otimes \mathbf{x}_2 = \mathbf{x}_1 \otimes \mathbf{x}_2

define the dual product of any two groups Γ_1, Γ_2 defined on $\Gamma_1 \otimes \Gamma_2$, to act on dual products but $\mathbb{W}_1 \otimes \mathbb{W}_2$, as

\Gamma_1 \otimes \Gamma_2 \mathbf{w}_1 \otimes \mathbf{w}_2 = \left(\Gamma_1 \mathbf{w}_1 \otimes \Gamma_2 \mathbf{w}_2\right)

So, $X_1^{(1) \otimes (2)} = X_1 \otimes I_2$

Following properties of dual products can be verified:

\[\text{iii] } \left[X_1^{(1) \otimes 1}, X_1^{(1) \otimes 1}, X_1^{(1) \otimes 1} \right] = 0\]

\[\text{iii] } \left(X_1^{(1) \otimes 1} \right) \left(\Theta_1 \otimes \Lambda_2 \right) = \left(X_1 \Theta_1 \right) \otimes \left(\Lambda_2 \Lambda_2 \right)\]

\[\text{iii] } \left[\Theta_1 \otimes 1, \Lambda_1 \otimes 1 \right] = \Gamma_1 \otimes I_2\]

\[\left[X_1^{(1) \otimes 1}, X_1^{(1) \otimes 1}, X_1^{(1) \otimes 1} \right] = 0\]

\[\left[X_1^{(1) \otimes 1}, X_1^{(1) \otimes 1}, X_1^{(1) \otimes 1} \right] = 0\]

\[\left[X_1^{(1) \otimes 1}, X_1^{(1) \otimes 1}, X_1^{(1) \otimes 1} \right] = 0\]

\[\left[X_1^{(1) \otimes 1}, X_1^{(1) \otimes 1}, X_1^{(1) \otimes 1} \right] = 0\]
And the state $|\psi(\mathbf{x})\rangle = |\mathbf{x}_1\rangle \otimes |\mathbf{x}_2\rangle$

We will usually use $|\mathbf{x}\rangle$ notation but you should always remember direct product representation.

Direct Product Span for coordinates has W.F. property

Suppose $|\psi_1\rangle \otimes |\psi_2\rangle$ span $V_1 \otimes V_2$. General state will be

$$|\psi\rangle = \sum_{i,\nu} c_{i,\nu} |\psi_1^i\rangle \otimes |\psi_2^\nu\rangle$$

$$\langle x_1 | \otimes \langle x_2 | |\psi\rangle = \sum_{i,\nu} c_{i,\nu} \langle x_1 | \psi_1^i \rangle \langle x_2 | \psi_2^\nu \rangle$$

$$= \sum_{i,\nu} c_{i,\nu} \psi_1^i(x_1) \psi_2^\nu(x_2)$$

Evolution of the Two-Particle State Vector

$$i\hbar \frac{d}{dt} |\psi\rangle = \left[-\frac{\hbar^2}{2m_1} \frac{\partial^2}{\partial x_1^2} + \frac{\hbar^2}{2m_2} \frac{\partial^2}{\partial x_2^2} + V(x_1, x_2) \right] |\psi\rangle$$

$$= H |\psi\rangle$$

Separable Hamiltonian $V(x_1, x_2) = V(x_1) + V(x_2)$

$$H = H_1 + H_2$$

For a stationary state

$$i\hbar \frac{d}{dt} |\psi\rangle = \{-i\hbar \frac{d}{dt} \} |\psi\rangle = E |\psi\rangle$$

$$|\psi(t)\rangle = |E\rangle e^{-iEt/\hbar}$$
\[
\left[H_1(x_1, p_1) + H_2(x_2, p_2) \right] |E\rangle = E |E\rangle
\]

Now, since \(\langle 1E | H_1, H_2 | 1E \rangle = 0 \), the ground state and excited state eigenvectors are

\[
|E_{1E}\rangle \otimes |E_{2E}\rangle
\]

\[
H_1 |E_{1E}\rangle = E_1 |E_{1E}\rangle
\]

\[
H_2 |E_{2E}\rangle = E_2 |E_{2E}\rangle
\]

\[
H |E\rangle = (E_1 + E_2) |E\rangle
\]

\[
|\Psi(t)\rangle = |E_{1E}\rangle e^{-iE_{1E}t} \otimes |E_{2E}\rangle e^{-iE_{2E}t}
\]

Now suppose we worked instead in coordinate basis

\[
\begin{bmatrix}
-\frac{\hbar^2}{2m_1} \frac{\partial^2}{\partial x_1^2} + V(x_1) \\
-\frac{\hbar^2}{2m_2} \frac{\partial^2}{\partial x_2^2} + V(x_2)
\end{bmatrix}
|\Psi(x_1, x_2)\rangle
= E
|\Psi(x_1, x_2)\rangle
\]

\[
|\Psi(x_1, x_2)\rangle = \langle x_1, x_2 | E\rangle
\]

We consider this equation by the method of separation of variables. Assume

\[
|\Psi(x_1, x_2)\rangle = |\Psi_1(x_1)\rangle \otimes |\Psi_2(x_2)\rangle
\]

Putting in the L.H.S. and dividing by the quantum numbers

\[
\frac{1}{|\Psi_1(x_1)\rangle \langle \Psi_1(x_1)|}
\left[
-\frac{\hbar^2}{2m_1} \frac{\partial^2}{\partial x_1^2} + V(x_1)
\right]
|\Psi_1(x_1)\rangle
\]

\[
\left[
-\frac{\hbar^2}{2m_2} \frac{\partial^2}{\partial x_2^2} + V(x_2)
\right] |\Psi_2(x_2)\rangle
\]

\[
+ \frac{1}{|\Psi_2(x_2)\rangle \langle \Psi_2(x_2)|}
\left[
-\frac{\hbar^2}{2m_1} \frac{\partial^2}{\partial x_1^2} + V(x_1)
\right] |\Psi_1(x_1)\rangle = E
\]
A function \(\psi_k \) with a fixed \(k \) equals a constant. So both the functions must separately be constant. Call the 2 constants \(E_1, E_2 \).

\[
\frac{1}{2m} \left[-\frac{\hbar^2}{2} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi_k(x) = E_k \psi_k(x) = E_k \psi_k(x), \quad k = 1, 2
\]

\[
E = E_1 + E_2
\]

So we have

\[
\psi_k(x, x', t) = \psi_k(x, x', t) \exp \left(-i E_k t / \hbar \right)
\]

\[
= \psi_k(x, t) \exp \left(-i E_k t / \hbar \right) \exp \left(-i E_k t / \hbar \right)
\]

where \(\psi_k \), \(\psi_k \) are superpositions of corresponding 1-particle solutions, etc.

\(\Box \) Interacting Particles

\[
H = \frac{\hat{p}_1^2}{2m_1} + \frac{\hat{p}_2^2}{2m_2} + V(x_1, x_2), \quad V(x_1, x_2) = V(x_1 - x_2)
\]

\(\Box \) Classical

Then define center of mass coordinates
\[x_{cm} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \]

\[x = x_1 - x_2 \]

\[(m_1 + m_2)\ x_{cm} = m_1 x_1 + m_2 x_2 \]

\[x_1 = (m_1 + m_2) = m_1 x + (m_1 + m_2)\ x_{cm} \]

\[x_1 = \frac{m_2\ x + x_{cm}}{m_1 + m_2} \]

\[x_1 = x_{cm} - \frac{m_1 x}{(m_1 + m_2)} \]

Now write Lagrange density in lens of the c

\[L = \frac{1}{2} \left[m_1 \dot{x}_1^2 + (m_2 \dot{x}_2^2 - V(x)) \right] \]

\[= \frac{1}{2} m_1 \left(\frac{m_2}{m_1 + m_2} \dot{x}_1^2 + \frac{1}{2} m_1 \left(-m_1 \dot{x}_1^2 + x_{cm} \right)^2 \right) \]

\[- V(x) \]

\[= \frac{1}{2} \left(\frac{m_1 m_2 + m_2 m_1}{(m_1 + m_2)^2} \right) \dot{x}_1^2 + \frac{1}{2} \left(m_1 + m_2 \right) \dot{x}_{cm}^2 - V(x) \]

\[\frac{1}{\hat{m}} = \frac{1}{m_1} + \frac{1}{m_2} = \frac{m_1 m_2}{m_1 + m_2} \]

\[m = \frac{m_1 m_2}{m_1 + m_2} \]
\[H = \frac{p_m^2 + p_r^2}{2(M+m)} + V(x) \]

\[p_m = \frac{\partial E}{\partial x} = (M+m) \frac{\partial x}{\partial x} \]

So again square \(\sigma \) or \(\eta \)

\[\left[x_m, p_m \right] = i \hbar \]

\[\left[x, \eta \right] = i \hbar \]

\[H = \frac{p_m^2 + p_r^2 + V(x)}{2M} \]

\[\psi_E(x_m, \eta) = \frac{e^{i p_m x_m / \hbar}}{(2\pi \hbar)^{1/2}} \Phi_{\text{rest}}(\eta) \]

\[E = \frac{p_m^2}{2M} + E_{\text{rest}} \]

The non-helical dynamics is in \(E_{\text{rest}}(\eta) \), which is the energy eigenvalue for particles of mass \(m \) and a potential \(V(x) \).

Generalizations

Mass particles in 1-dim - Straightforward.

Mass particles in n dimensions - Eigenstate \(|\mathbf{E}(x)\rangle = |x, y, z\rangle \)
\[
\langle \xi | \bar{\xi} \rangle = \frac{1}{2^3} (\xi - \bar{\xi}) = \frac{1}{2} (x - x') \frac{1}{2} (y - y') \frac{1}{2} (z - z')
\]

Identical Particles

Call two particles identical if they are exact replicas of each other in any respect.

Suppose we have a system with 2 distinguishable particles (in 1-dimension) 1 and 2 and a measurement of position shows particle 1 to be at \(x = 0 \) and particle 2 to be at \(x = 6 \). After measurement

\[
1(4) = 1x = a, \quad x_2 = 6 \rangle = \langle a | 6 \rangle
\]

State obtained by unboosting \(1(4) \)

\[
1(4) = 1 \alpha \rangle
\]

is different.

Now suppose particles are identical. Then two states at the same state \(1(4)(a, b) \rangle \). Since one state is unidentical

\[
1(4)(a, b) = e^{2i\kappa} 1(4)(b, a) \rangle = e^{2i\kappa} 1(4)(a, b) \rangle
\]

\(\kappa = 0, \pi \).

But \(1(4)(a) \rangle \) is an identical state and hence are not equivalent as \(1(4)(a, b) \rangle \neq 1(4)(a, b) \rangle \)

Thus,

\[
1(4)(a, b) \rangle = \beta |a \rangle + \alpha |b \rangle
\]

\[
\sqrt{18^2 + 18^2}
\]
\[14(a, b)\rangle = 4 \cdot 14(b, a)\rangle \]

\[\Rightarrow B = a \quad \text{and we can tell} \]

\[14(a, b)\rangle = \frac{1}{\sqrt{2}} [a b\rangle + b a\rangle] \quad \text{symmetric state} \]

and can also \[14(a, b)\rangle = -14(b, a)\rangle \]

\[14(b, a)\rangle = \frac{1}{\sqrt{2}} [a b\rangle - b a\rangle] \quad \text{antisymmetric state} \]

\text{Bosons + Fermions}

Now a given state of particles is either symmetric or antisymmetric. A symmetric state is one where the exchange of two particles maintains the same state. So, particles are divided into 2 types. Those with symmetric \(s \)'s are called bosons and those with antisymmetric \(s \)'s are called fermions.

Since we have two identical bosons \(x \) at one of them at \(x = 0 \) and at one of \(x = 6 \). Then know they are in state

\[[a b\rangle + b a\rangle] \]

Since we have two identical fermions at one of them at \(x = 0 \) and at \(x = 6 \), then in state

\[[a b\rangle - b a\rangle] \]
Now we have fermion states:

$$|w, w, A\rangle = \frac{|w, w, \uparrow\rangle - |w, w, \downarrow\rangle}{\sqrt{2}}$$

If \(w = 0 \), then \(|w, w, A\rangle = 0 \). So two fermions cannot be in same state!

All of this generalises to 8-dimensions. In 3-dimensions, a particle can have an internal angular momentum called spin. \(\hbar \) can take values \(0, \frac{\hbar}{2}, \frac{\hbar}{2}, \frac{3\hbar}{2}, \ldots \). Particles with integer spin are bosons while those with half-integer spin are fermions. Beyond scope of this class to give explanation of this result called spin-statistical theorem.

Bosonic and Fermionic Hilbert spaces.

Space \(\mathcal{V}_{102} \) consists of all reducible \(|w, w, \rangle \) and all linear combinations of them, i.e. all reducible space of all symmetric bosonic states and all antisymmetric states. For each state \(|w, w, \rangle \) there is one bosonic state \(|w, w, s\rangle = \frac{1}{\sqrt{2}} (|w, w, \uparrow\rangle + |w, w, \downarrow\rangle) \) and similar for Fermionic \(|w, w, A\rangle = \frac{1}{\sqrt{2}} (|w, w, \uparrow\rangle - |w, w, \downarrow\rangle) \). Linear combination of symmetric or antisymmetric similar to antisymmetric. So they live in vector spaces. We can write

$$\mathcal{V}_{102} = \mathcal{V}_s \oplus \mathcal{V}_a$$

and any vector \(|w, w, \rangle \) can be decomposed into sum of \(\mathcal{V}_s \) and \(\mathcal{V}_a \)

$$|w, w\rangle = \frac{1}{\sqrt{2}} (|w, w, \uparrow\rangle + |w, w, A\rangle)$$
For basis elements of total $\hat{l}_z > 0$ we are associated with "quantum number" m, and each with ℓ_2 is

\[P_\ell(w, w_0) = \left| \langle w_0, w_0; \ell_2 | \hat{l}_z \rangle \right|^2 \]

\[1 = \langle \hat{l}_z | \hat{l}_z \rangle = \sum_{\text{dist}} \left| \langle w, w_0; \ell_2 | \hat{l}_z \rangle \right|^2 \]

\[= \sum_{\text{dist}} P_\ell(w, w_0) \]

\sum_{dist} is an element state.

\[\sum = \sum_{w_0, \ell_{\text{min}}} \sum_{w, \ell_{\text{max}}} \]

so we are not counting $|w, w_0; \ell_2 \rangle$ and $|w, w_0; \ell_2 \rangle$ as different.

Now consider case where D is scalar X as are w and w_0.

\[P_\ell(x, x_0) = \left| \langle x, x_0; \ell_2 | \hat{l}_z \rangle \right|^2 \]

\[1 = \int \int \frac{P_\ell(x, x_0) \, dx_0 \, dx_2}{2} - \int \int \left| \langle x, x_0; \ell_2 | \hat{l}_z \rangle \right|^2 \, dx_0 \, dx_2 \]

Factor of $\frac{1}{2}$ makes for double counting done by $dx_0 \, dx_2$ integration.

Define out

\[\chi_3(x, x_0) = \frac{1}{\sqrt{2}} \left(|x, x_0; \ell_2 \rangle + i |x_0, x; \ell_2 \rangle \right) \]

so that
\[1 = \iiint \frac{1}{\sqrt{\mathcal{L}(x, x')}} dx dx' \]

and then

\[R_s(x, x') = 2/\mathcal{L}(x, x') \]

Note that

\[\mathcal{L}(x, x') = \frac{1}{\sqrt{2}} \langle x_1, x_2 | \psi_s \rangle \]

\[= \frac{1}{2} \left[\langle x_1, x_2 | \psi_s \rangle + \langle x_2, x_1 | \psi_s \rangle \right] \]

\[= \langle x_1, x_2 | \psi_s \rangle \quad \rightarrow \text{symmetric} \]

Now, with this

\[1 = \langle \psi_s | \psi_s \rangle = \iiint \frac{1}{\sqrt{\mathcal{L}(x, x')}} \mathcal{L}(x, x') dx dx' \]

\[= \iiint \mathcal{L}(x, x') \langle x_1, x_2 | \psi_s \rangle \langle x_1, x_2 | \psi_s \rangle dx dx' \]

Now suppose as a corollary that we have two states in a 3-dim box with quantum number

- \(n = 3 \), \(n = 4 \) localized states

\[| \psi_s \rangle = \frac{1}{\sqrt{2}} (13\downarrow + 14\uparrow) \]

\[\mathcal{L}(x, x') = \frac{1}{\sqrt{2}} \langle x_1, x_2 | \psi_s \rangle \]

\[= \frac{1}{2} \left(\langle x_1, x_1 | + \langle x_2, x_2 | \right) \left(\frac{13\downarrow + 14\uparrow}{\sqrt{2}} \right) \]
\[
\begin{align*}
\psi(x) &= \frac{1}{2\sqrt{2}} \left[\psi_3(x_1) \psi_4(x_2) + \psi_3(x_2) \psi_4(x_1) + \psi_3(x_1) \psi_3(x_2) \right] \\
&= \frac{1}{2\sqrt{2}} \left[\psi_3(x) \psi_4(x) + \psi_4(x) \psi_3(x) \right] \\
&= \langle x_1 x_2 | \psi \rangle
\end{align*}
\]

Recall that
\[
\psi_n(x) = \left(\frac{2}{L} \right)^{\frac{1}{2}} \sin \left(\frac{n\pi x}{L} \right)
\]

What about Fermions. Same idea:
\[
\begin{align*}
\langle \psi_1, \psi_2 | A \rangle &= \frac{1}{\sqrt{2}} \left(\langle \psi_1, \psi_2 | A \psi_1 \rangle - \langle \psi_1, \psi_2 | A \psi_2 \rangle \right) \\
\langle x_1 x_2 | \psi \rangle &= \frac{1}{\sqrt{2}} \langle x_1 x_2 | \psi \rangle \\
A(x_1, x_2) &= 2 |\psi(x_1, x_2)|^2 \\
1 &= \int \int A(x_1, x_2) \, dx_1 \, dx_2 = \int \int |\psi(x_1, x_2)|^2 \, dx_1 \, dx_2
\end{align*}
\]

Returning to our example. Suppose instead of being 2
particles, we put more fermions. Then state
\[
\langle \psi \rangle = \frac{1}{\sqrt{2}} \left(\langle \psi_1, \psi_2 \rangle - \langle \psi_3, \psi_4 \rangle \right)
\]
Wave function

\[\psi(x, y) = \frac{1}{\sqrt{2}} \left(\psi_1(x) \psi_2(y) - \psi_2(x) \psi_1(y) \right) \]

In general from the states \(x_1, x_2 \)

\[\psi(x_1, x_2) = \frac{1}{\sqrt{2}} \begin{vmatrix} \psi_1(x_1) & \psi_2(x_1) \\ \psi_2(x_2) & \psi_1(x_2) \end{vmatrix} \]

Note: Equation in place 3, +

\[\rho_{yx}(x_1, x_2) = \frac{1}{2} \left(\psi^*(x_1) \psi(x_2) + \psi^*(x_2) \psi(x_1) \right) \]

\[= \frac{1}{\sqrt{2}} \left(\psi_1(x_1) \psi_2(x_2) \psi_1^*(x_2) + \psi_2(x_1) \psi_1(x_2) \psi_2^*(x_2) \right) \]

\[+ \frac{1}{\sqrt{2}} \left(\psi_1^*(x_1) \psi_2(x_2) \psi_1(x_2) + \psi_2^*(x_1) \psi_1(x_2) \psi_2(x_2) \right) \]

\[\pm \frac{1}{\sqrt{2}} \left(\psi_1^*(x_1) \psi_2(x_2) + \psi_2^*(x_1) \psi_1(x_2) \right) \psi_3(x_2) + \text{h.c.} \]

With 48 mm hatch, parts 1-5 to part 1 in state 3 & part 2 in state 4, and zero in part 1 in state 2 for them and part 2 in state 3. Interference, barber, and liver...