Phys 125a: Homework 5. Due Nov. 23, 2005

Instructor Mark B. Wise

Problem 1 (Exercises 10.3.1, 10.3.2, and 10.3.3)

a. Two identical bosons are found to be in states $|\phi\rangle$ and $|\psi\rangle$. Write down the normalized state vector describing the system when $\langle\phi|\psi\rangle \neq 0$.

b. When an energy measurement is made on a system of three bosons in a box, the \(n \) values obtained were 3, 3, and 4. Write down a symmetrized, normalized state vector.

c. Imagine a situation in which there are three particles and only three states \(a, b, \) and \(c \) available to them. Show that the total number of allowed, distinct configurations for this system is

(1) 27 if they are distinct
(2) 10 if they are bosons
(3) 1 if they are fermions

Problem 2 (Exercises 10.2.1 and 10.2.2)

a. Recall that a particle in a one-dimensional box extending from \(x = 0 \) to \(L \) is confined to the region \(0 \leq x \leq L \); its wave function vanishes at the edges \(x = 0 \) and \(L \) and beyond. Consider now a particle confined in a three-dimensional cubic box of volume \(L^3 \). Choosing as the origin one of its corners, and the \(x, y, \) and \(z \) axes along the three edges meeting there, show that the normalized energy eigenfunctions are

$$ \Psi_E(x, y, z) = \left(\frac{2}{L} \right)^{1/2} \sin\left(\frac{n_x \pi x}{L} \right) \left(\frac{2}{L} \right)^{1/2} \sin\left(\frac{n_y \pi y}{L} \right) \left(\frac{2}{L} \right)^{1/2} \sin\left(\frac{n_z \pi z}{L} \right) $$

where
$$ E = \frac{\hbar^2 \pi^2}{2ML^2} (n_x^2 + n_y^2 + n_z^2) $$

and \(n_i \) are positive integers.

b. Quantize the two-dimensional oscillator for which the classical Hamiltonian is,

$$ H = \frac{p_x^2 + p_y^2}{2m} + \frac{1}{2} m \omega_x^2 x^2 + \frac{1}{2} m \omega_y^2 y^2 $$

Show that the allowed energies are

$$ E = (n_x + 1/2) \hbar \omega_x + (n_y + 1/2) \hbar \omega_y, \quad n_x, n_y = 0, 1, 2, \ldots $$

Write down the corresponding wave functions in terms of single oscillator wave functions. Verify that they have definite parity (even/odd) number \(x \to -x, y \to -y \) and that the parity depends only on \(n = n_x + n_y \).

c. Consider next the isotropic oscillator \((\omega_x = \omega_y) \). Write explicit, normalized eigenfunctions of the first three states (that is, for the cases \(n = 0 \) and \(1 \)). Reexpress your results in terms of polar coordinates \(\rho \) and \(\phi \). Show that the degeneracy of a level with \(E = (n + 1) \hbar \omega \) is \(n + 1 \).

Problem 3

Let \(\hat{A} \) and \(\hat{B} \) be arbitrary operators. Define a new operator \(\hat{f} \) as:

$$ \hat{f}(x) \equiv \exp\left(x\hat{A} \right) \hat{B} \exp\left(-x\hat{A} \right), $$
where x is a c–number variable. Let primes denote derivation with respect to x.

a. Show that:
\[\hat{f}'(x) = \exp \left(x\hat{A} \right) [\hat{A}, \hat{B}] \exp \left(-x\hat{A} \right) \]
and find $\hat{f}''(x)$.

b. Expanding $\hat{f}(x)$ as a Taylor series, argue that:
\[\hat{f}(x) = \hat{B} + x [\hat{A}, \hat{B}] + \frac{x^2}{2!} [\hat{A}, [\hat{A}, \hat{B}]] + \ldots \]

c. Use the result of part b to show that:
\[e^{x\hat{B}/\hbar} \hat{X} e^{-x\hat{B}/\hbar} = \hat{X} + \ell. \]

d. Now define the operator:
\[\hat{C}(x) \equiv e^{x\hat{A}} e^{x\hat{B}}. \]
Show that $\hat{C}'(x) = \hat{O}(x)\hat{C}(x)$ for some operator $\hat{O}(x)$. Use the result of part b to give $\hat{O}(x)$ as a power series in x.

e. Now suppose that $[\hat{A}, \hat{B}]$ commutes with \hat{A}, so that all but the first two terms in the expansion for $\hat{O}(x)$ disappear. Argue that this implies that:
\[\hat{C}(x) = \exp \left\{ x \left(\hat{A} + \hat{B} \right) + \frac{x^2}{2} [\hat{A}, \hat{B}] \right\}. \]
f. Using the result for part e, show the so-called **Campbell-Baker-Hausdorff theorem**: if $[\hat{A}, \hat{B}]$ commutes with both \hat{A} and \hat{B}, then:
\[e^{\hat{A}+\hat{B}} = e^{\hat{A}} e^{\hat{B}} e^{-[\hat{A}, \hat{B}]/2}. \]

Problem 4

Recall your work on coherent states from Homework 4: a coherent state $|\lambda\rangle$ of the simple harmonic oscillator is an eigenstate of the destruction operator \hat{a}, with complex eigenvalue λ.

a. Show that a space translation by a finite distance x_0 takes the vacuum state $|0\rangle$ of a simple harmonic oscillator to a coherent state. Give the eigenvalue λ of the coherent state in terms of x_0.

This process only allows you to generate coherent states with purely real eigenvalues. The general coherent state can be obtained by displacing the vacuum $|0\rangle$ along both the X and the P directions in phase-space. To do this, we define the displacement operator:
\[D(x_0, p_0) \equiv \exp \left\{ \frac{i}{\hbar} \left(p_0 \hat{X} - x_0 \hat{P} \right) \right\} \]

b. Show that we can equivalently write this displacement operator as:
\[D(\lambda) = \exp \left[\text{Re}(\lambda) (\hat{a}^\dagger - \hat{a}) + i \text{Im}(\lambda) (\hat{a} + \hat{a}^\dagger) \right] = e^{\lambda \hat{a}^\dagger - \lambda^* \hat{a}}, \]
where $x_0 = \sqrt{2\hbar/m \omega} \text{Re}(\lambda)$ and $p_0 = \sqrt{2\hbar/m \omega} \text{Im}(\lambda)$.
c. Show that the formula for a coherent state

$$|\lambda\rangle = D(\lambda)|0\rangle$$

is equivalent to the form that we gave you at the beginning of problem 4 in Homework 4.

Hint: First write $D(\lambda) = e^{\lambda \hat{a}^\dagger - \lambda^* \hat{a}}$ and then use the Campell-Baker-Hausdorff theorem from Problem 3.