Review of Electrodynamics Classical

Response of matter to electromagnetic fields is given by laws of force law

\[F = q \left(\vec{E} + \frac{\partial \vec{B}}{\partial t} \right) \]

For particles of charge \(q \), moving with \(\vec{v} \), response of fields to charges is given by Maxwell's equations:

1. \[\nabla \cdot \vec{E} = \frac{4\pi j}{c} \]
2. \[\nabla \times \vec{E} + \frac{1}{c^2} \frac{\partial \vec{B}}{\partial t} = 0 \]
3. \[\nabla \cdot \vec{B} = 0 \]
4. \[\nabla \times \vec{B} - \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} = \frac{4\pi}{c} \vec{j} \]

where \(\vec{E} \) and \(\vec{j} \) are the electric and current densities. They satisfy the continuity equation:

\[\frac{\partial \vec{E}}{\partial t} + \nabla \cdot \vec{j} = 0 \]

Potentials \(\vec{A} \) and \(\phi \) are introduced as follows. Since \(\nabla \cdot \vec{B} = 0 \), we can write:

\[\vec{B} = \nabla \times \vec{A} \]

From vector potential \(\vec{A} \), we have:

\[\nabla \times (\vec{E} + \frac{1}{c} \frac{\partial \vec{A}}{\partial t}) = 0 \]

So we can write:

\[\vec{E} + \frac{1}{c} \frac{\partial \vec{A}}{\partial t} = -\nabla \phi \]
In some potential ϕ. Now we can write
\[\mathbf{E} = \nabla \phi \]
\[\mathbf{B} = \nabla \times \mathbf{A} \]
\[\mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \]

Using $\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$ we get
\[-\nabla^2 \mathbf{A} - \frac{1}{c} \frac{\partial^2 \mathbf{A}}{\partial t^2} = \frac{4\pi}{c} \mathbf{j} \]
\[\nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} = \frac{1}{c} \frac{\partial}{\partial t} \left(-\frac{\nabla^2 \phi}{c} - \frac{\partial \mathbf{A}}{\partial t} \right) \]
\[\nabla \cdot \mathbf{A} + \frac{\partial \phi}{\partial t} = -\frac{4\pi j}{c} \]

Now, there is a certain ambiguity on \mathbf{A} and ϕ.

Suppose we have
\[\mathbf{A}' = \mathbf{A} - \nabla \Lambda \]
\[\phi' = \phi + \frac{1}{c} \frac{\partial \Lambda}{\partial t} \]

Then we have \mathbf{E}, \mathbf{B} fields
\[\mathbf{B}' = \nabla \times \mathbf{A}' = \mathbf{B} \]
\[\mathbf{E}' = -\nabla \phi' - \frac{1}{c} \frac{\partial \mathbf{A}'}{\partial t} \]
\[= -\nabla \left(\phi + \frac{1}{c} \frac{\partial \Lambda}{\partial t} \right) - \frac{\nabla^2 \Lambda}{c} \]
\[+ \frac{\partial}{\partial t} \left(\frac{\nabla^2 \Lambda}{c} \right) = \mathbf{E} \]
We can now take \(\phi = 0 \). For example take
\[
\Lambda(t, t') = \phi(t, t') \int \phi(t, t') dt'
\]
and that in some \(t' \), \(\phi = 0 \) we can also choose \(\nabla \cdot A = 0 \) by making a time independent gauge factor

\[
\nabla^2 \Lambda = (\nabla \cdot A)
\]

so

\[
\Lambda = -\frac{1}{4\pi} \int d^3 r' \frac{\Lambda(t, r')}{|r - r'|}
\]

and

\[
\nabla^2 \frac{1}{|r - r'|} = -4\pi \delta(r - r')
\]

In constant gauge equations of motion with no sources

\[
\nabla^2 A - \frac{1}{2} \frac{\partial^2 A}{\partial t^2} = 0
\]

\[
\nabla \cdot A = 0
\]

\[
\nabla \times A = 0
\]

\[
\overline{A} = \bar{A}_0 \cos (k \cdot \overline{r} - wt)
\]

where

\[
\omega^2 = k^2
\]

is a solution to that eqn. \(\nabla A = 0 \)

gauge condition means also

\[
\overline{k} \cdot \bar{A}_0 = 0 \quad \bar{A}_0 \perp \overline{k}
\]

and \(\overline{k} \cdot \bar{A}_0 = \nabla \cdot \bar{A}_0 = 0 \) as well. Now let go back and find \(\bar{E}, \bar{B} \) fields

\[
E = -\frac{1}{2} \frac{\partial \bar{A}}{\partial t} - (\overline{w} \overline{A}) \sin (k \cdot \overline{r} - wt)
\]

\[
\bar{B} = \nabla \times \bar{A} = -k \times \bar{A}_0 \sin (k \cdot \overline{r} - wt)
\]
Note that $|\vec{E}| = |\vec{B}|$. Recall for electromagnetics that

$$|\vec{E}| = \frac{c}{\gamma} |\vec{E}_x\vec{B}|$$

gives energy flow across a unit area $\frac{dE}{dt}$ per unit time onto

$$\mathcal{E} = \frac{1}{8\pi} (|\vec{E}|^2 + |\vec{B}|^2)$$

gives the energy density (energy per unit volume) stored in electromagnetic fields for k_0.

$$|\vec{E}| = \frac{w}{8\pi c} |\vec{A}|^2$$

$$\mathcal{E} = \frac{1}{8\pi} \frac{w^2}{c^2} |\vec{A}|^2$$

Gauge invariance and potentials in QM

$$\langle \bar{\psi}(\vec{r}, t) \psi(\vec{r'}, t') \rangle = \delta(\vec{r} - \vec{r'}, t - t')$$

$$= N \sum_{\text{paths}} \exp \left(\frac{iS_{\text{classical}}}{\hbar} \right)$$

(normalization)

Now for a particle interacting with electromagnetic field

$$\mathcal{L} = -\frac{1}{2} m \vec{\dot{\psi}}^2 - \frac{e}{c} \vec{\psi} \vec{A}$$
\[
S = \int_{t_1}^{t_2} dt \left(\frac{1}{2} m \dot{x}^2 + \frac{1}{2} \mathbf{A} \cdot \mathbf{A} - q \phi \right)
\]
evaluated along a path \(\mathbf{r} = (\mathbf{r}(t), \phi(t)) \) and \((t, \mathbf{x}) \)
Now suppose we perform a gauge transformation on the potential \(\phi \to \phi + \frac{d}{dt} \mathbf{A} \cdot \mathbf{A} \)
\[S \to S' = S - \int_{t_1}^{t_2} dt \left(\mathbf{v} \cdot \mathbf{A} + \frac{d}{dt} \mathbf{A} \right)\]
but \(\mathbf{v} \cdot \mathbf{A} + \frac{d}{dt} \mathbf{A} = \partial \mathbf{A} / \partial t \)
\[S \Rightarrow S' = S \left(\mathbf{A}(t_1) - \mathbf{A}(t_2) \right) \]
S = S' only if the same classical dynamics.

We only differ by a boundary term \(\partial \mathbf{A} / \partial t \).

Equivalent to a change of basis:
\[|\tilde{\phi}' \rangle = e^{-i q \mathbf{A} \cdot \mathbf{r} / \hbar} |\phi \rangle \]
Cloning an act
\[\mathbf{H}(\tilde{\phi}') = \langle \tilde{\phi}' | \mathbf{H} | \phi \rangle = e^{-i \mathbf{A} \cdot \mathbf{r} / \hbar} \mathbf{H} e^{i \mathbf{A} \cdot \mathbf{r} / \hbar} \]
Well its just a change in measurement.
No B field

\[y(t) = y_1(t) + y_2(t) \]

This is without B field. Now we can add an B field. Each path gets an extra

\[\exp \left[\frac{ig}{nc} \int_{t, t'} \mathbf{A} \cdot d\mathbf{l} \right] \]

\[= \exp \left[\frac{ig}{nc} \int_{\text{source}} \mathbf{A} \cdot d\mathbf{s} \right] \]

Set $\mathbf{V} \times \mathbf{A} = 0$ near P_1, P_2. The integral over some path P_1 and its nearby path P_2 is well defined. But

\[\int_{P_2} \mathbf{A} \cdot d\mathbf{s} - \int_{P_1} \mathbf{A} \cdot d\mathbf{s} = \oint \mathbf{A} \cdot d\mathbf{s} \]

\[= \int_{\mathbf{S}} (\nabla \times \mathbf{A}) \cdot d\mathbf{s} = \oint \mathbf{B} \cdot d\mathbf{s} = \mathbf{E} \neq 0 \]
With \(\text{field} \)

\[
y_i(\vec{r}) = \exp\left(\frac{ie}{\hbar c} \int_{\vec{r}_1}^{\vec{r}} A \cdot d\vec{r}'\right) y_i(\vec{r}) \\
+ \exp\left(\frac{ie}{\hbar c} \int_{\vec{r}_2}^{\vec{r}} A \cdot d\vec{r}'\right) y_i(\vec{r})
\]

\[
= \left[\text{overall factor} \right] \left(y_i(\vec{r}) + \exp\left(\frac{ie}{\hbar c} \int A \cdot d\vec{r}\right) y_i(\vec{r}) \right)
\]

\[
= \left[\text{overall factor} \right] \left(y_i(\vec{r}) + \exp\left(\frac{ie}{\hbar c} \int A \cdot d\vec{r}\right) y_i(\vec{r}) \right)
\]

\[\frac{\Phi}{\hbar c} = 2\pi n\]

The effect comes from the \(|y_i(\vec{r})|^2 \)

But the dot product

\[\frac{\Phi}{\hbar c} = 2\pi n\]
Magnetic Monopoles

The Maxwell equations hold similarly for E, B and there are no magnetic charges just electric charges. The source of a magnetic field is a moving electric charge (an electromagnetic source). Suppose static magnetic charge source well density q_m. Then we would have

$$\nabla \cdot B = 4\pi q_m$$

analogous to

$$\nabla \cdot E = 4\pi q$$

Suppose there is a point magnetic charge at the vertex of length q_m, analogous to electric charge

$$B = \left(\frac{q_m}{r^2} \right) \hat{r}$$

Now the volt potential plays an important role particularly in QM. Axial potential might appear, can derive the magnetic field from

$$\mathbf{A} = \frac{q_m (1 - \cos \theta)}{\sin \theta} \hat{\phi}$$

not singular at $\theta = 0$

using spherical polar coordinates. Recall the

in spherical polar coordinate

$$\nabla \times \mathbf{A} = \hat{\phi} \left[-\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (A_{\phi} \sin \theta) \right) - \frac{1}{r} \frac{\partial}{\partial r} \left(r A_{\phi} \right) \right] + \hat{\theta} \left[-\frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(r A_{\theta} \right) \right] + \hat{r} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r A_{\phi} \right) \right]$$
But even though vector potential is not unique at $\Theta = 0$, it is singular at $\Theta = \pi$ on a regular realm. Cannot have a free of singular everywhere! Gauss law yields

$$\int \mathbf{B} \cdot d\mathbf{a} = 4\pi I$$

closed surf

for any surface around origin. On the other hand, A non-singular except $\nabla \cdot (\nabla \times \mathbf{A}) = 0$

$$\int \mathbf{B} \cdot d\mathbf{a} = \int \nabla \cdot (\nabla \times \mathbf{A}) \, d\mathbf{x} = 0$$
closed surf volume

How the such a singular not cause any flux so $\int \mathbf{B} \cdot d\mathbf{a} = 0$

\[\text{[Diagram: Monopole, String, Caricatured Flux]} \]

Flat

$$I = \int \mathbf{B} \cdot d\mathbf{a} = 4\pi I c$$

Want seem to be understood so I has no physical effect. Born at horizon string flux must causal. Forbidden

$$\frac{4\pi e c m}{\hbar c} = 2\pi I$$

$n = 0, \pm 1, \pm 2, \ldots$

$m = \frac{(n + I c)}{\hbar c}$

magnetic charge

related to electric

Dirac Quantization Conjecture